Cordell HJ: Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Human Mol Genet 2002,11(20):2463-8. http://www.ncbi.nlm.nih.gov/pubmed/12351582 10.1093/hmg/11.20.2463
Article
CAS
Google Scholar
Tong A, Lesage G, Bader G, Ding H: Global mapping of the yeast genetic interaction network. Science’s 2004,303(February):808-813. http://stke.sciencemag.org/cgi/content/abstract/sci;303/5659/808
Article
CAS
Google Scholar
Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD: A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 2006,124(5):1069-81. http://www.ncbi.nlm.nih.gov/pubmed/16487579 10.1016/j.cell.2005.12.036
Article
CAS
PubMed
Google Scholar
Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ: Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 2005,123(3):507-19. http://www.ncbi.nlm.nih.gov/pubmed/16269340 10.1016/j.cell.2005.08.031
Article
CAS
PubMed
Google Scholar
Leiserson MDM, Tatar D, Cowen LJ, Hescott BJ: Inferring Mechanisms of Compensation from E-MAP and SGA Data Using Local Search Algorithms for Max Cut. J Comput Biol 2011,18(11):1399-409. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3216108&tool=pmcentrez&rendertype=abstract 10.1089/cmb.2011.0191
Article
PubMed Central
CAS
PubMed
Google Scholar
Bandyopadhyay S, Kelley R, Krogan NJ, Ideker T: Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comput Biol 2008,4(4):e1000065. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2289880&tool=pmcentrez&rendertype=abstract 10.1371/journal.pcbi.1000065
Article
PubMed Central
PubMed
Google Scholar
Bellay J, Atluri G, Sing TL, Toufighi K, Costanzo M, Ribeiro PSM, Pandey G, Baller J, VanderSluis B, Michaut M, Han S, Kim P, Brown GW, Andrews BJ, Boone C, Kumar V, Myers CL: Putting genetic interactions in context through a global modular decomposition. Genome Res 2011,21(8):1375-87. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3149503&tool=pmcentrez&rendertype=abstract 10.1101/gr.117176.110
Article
PubMed Central
CAS
PubMed
Google Scholar
Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JLY, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AHY, van Dyk N, Wallace IM, Whitney Ja, Weirauch MT, Zhong G, Zhu H, Houry Wa, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser Ca, Myers CL, Andrews BJ, Boone C: The genetic landscape of a cell. Science (New York, N.Y.) 2010,327(5964):425-31. http://www.ncbi.nlm.nih.gov/pubmed/21945515 10.1126/science.1180823
Article
CAS
Google Scholar
Kelley DR, Kingsford C: Extracting between-pathway models from E-MAP interactions using expected graph compression. J Comput Biol 2011,18(3):379-90. http://www.ncbi.nlm.nih.gov/pubmed/21385041 10.1089/cmb.2010.0268
Article
CAS
PubMed
Google Scholar
Ulitsky I, Shlomi T, Kupiec M, Shamir R: From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions. Mol Syst Biol 2008,4(209):209. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2516364&tool=pmcentrez&rendertype=abstract
PubMed Central
PubMed
Google Scholar
Ma X, Tarone AM, Li W: Mapping genetically compensatory pathways from synthetic lethal interactions in yeast. PloS one 2008,3(4):e1922. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2275788&tool=pmcentrez&rendertype=abstract 10.1371/journal.pone.0001922
Article
PubMed Central
PubMed
Google Scholar
Brady A, Maxwell K, Daniels N, Cowen LJ: Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways. PloS one 2009,4(4):e5364. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2670499&tool=pmcentrez&rendertype=abstract 10.1371/journal.pone.0005364
Article
PubMed Central
PubMed
Google Scholar
Kelley R, Ideker T: Systematic interpretation of genetic interactions using protein networks. Nat Biotechnol 2005,23(5):1-14. http://www.nature.com/nbt/journal/v23/n5/abs/nbt1096.html
Google Scholar
Ulitsky I, Shamir R: Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks. Mol Syst Biol 2007,3(104):104. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1865586&tool=pmcentrez&rendertype=abstract
PubMed Central
PubMed
Google Scholar
Hescott BJ, Leiserson MDM, Cowen LJ, Slonim DK: Evaluating between-pathway models with expression data. J Comput Biology 2010,17(3):477-87. http://www.ncbi.nlm.nih.gov/pubmed/20377458 10.1089/cmb.2009.0178
Article
CAS
Google Scholar
Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, Greenblatt JF, Krogan NJ: Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 2007,446(7137):806-10. http://www.ncbi.nlm.nih.gov/pubmed/17314980 10.1038/nature05649
Article
CAS
PubMed
Google Scholar
Berriz GF, Beaver JE, Cenik C, Tasan M, Roth FP: Next generation software for functional trend analysis. Bioinformatics (Oxford, England) 2009,25(22):3043-4. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2800365&tool=pmcentrez&rendertype=abstract 10.1093/bioinformatics/btp498
Article
CAS
Google Scholar
Aguilar PS, Fröhlich F, Rehman M, Shales M, Ulitsky I, Olivera-Couto A, Braberg H, Shamir R, Walter P, Mann M, Ejsing CS, Krogan NJ, Walther TC: A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nat Struct & Mol Biol 2010,17(7):901-908. http://www.nature.com/doifinder/10.1038/nsmb.1829 10.1038/nsmb.1829
Article
CAS
Google Scholar
Smith R, Willett R, Kudlyk T, Pokrovskaya I: The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin. Traffic 2009,10(10):1502-1517. http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0854.2009.00965.x/full 10.1111/j.1600-0854.2009.00965.x
Article
PubMed Central
CAS
PubMed
Google Scholar
Ungar D, Oka T, Brittle EE, Vasile E, Lupashin VV, Chatterton JE, Heuser JE, Krieger M, Waters MG: Characterization of a mammalian, Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 2002,157(3):405-15. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2173297&tool=pmcentrez&rendertype=abstract 10.1083/jcb.200202016
Article
PubMed Central
CAS
PubMed
Google Scholar
Steet R: COG-7-deficient human fibroblasts exhibit altered recycling of Golgi proteins. Mol Biol Cell 2006,17(May):2312-2321. http://www.molbiolcell.org/content/17/5/2312.short
Article
PubMed Central
CAS
PubMed
Google Scholar
Fotso P, Koryakina Y, Pavliv O, Tsiomenko AB, Lupashin VV: Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J Biol Chem 2005,280(30):27613-23. http://www.ncbi.nlm.nih.gov/pubmed/15932880 10.1074/jbc.M504597200
Article
CAS
PubMed
Google Scholar
Ng BG, Sharma V, Sun L, Loh E, Hong W, Tay SKH, Freeze HH: Identification of the first COG-CDG patient of Indian origin. Mol Genet Metab 2011,102(3):364-7. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3058693&tool=pmcentrez&rendertype=abstract 10.1016/j.ymgme.2010.11.161
Article
PubMed Central
CAS
PubMed
Google Scholar
Ram R, Li B: Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p. Mol Biol Cell 2002,13(May):1484-1500. http://www.molbiolcell.org/content/13/5/1484.short
Article
PubMed Central
CAS
PubMed
Google Scholar
Whyte JR, Munro S: The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 2001,1(4):527-37. http://www.ncbi.nlm.nih.gov/pubmed/11703943 10.1016/S1534-5807(01)00063-6
Article
CAS
PubMed
Google Scholar
Santiago-Tirado FH, Bretscher A: Membrane-trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi network. Trends Cell Biol 2011,21(9):515-25. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3164296&tool=pmcentrez&rendertype=abstract 10.1016/j.tcb.2011.05.005
Article
PubMed Central
CAS
PubMed
Google Scholar
Moss J, Vaughan M: Molecules in the ARF orbit. J Biol Chem 1998,273(34):21431-4. http://www.ncbi.nlm.nih.gov/pubmed/9705267 10.1074/jbc.273.34.21431
Article
CAS
PubMed
Google Scholar
Moss J, Vaughan M: Activation of toxin ADP-ribosyltransferases by eukaryotic ADP-ribosylation factors. Mol Cell Biochem 1999,193(1-2):153-7. http://www.ncbi.nlm.nih.gov/pubmed/10331652
Article
CAS
PubMed
Google Scholar
Poon P, Wang X, Rotman M: Saccharomyces cerevisiae Gcs1 is an ADP-ribosylation factor GTPase-activating protein. Proc Nat Acad Sci USA 1996,93(September):10074-10077. http://www.pnas.org/content/93/19/10074.short
Article
PubMed Central
CAS
PubMed
Google Scholar
Bensen ES, Yeung BG, Payne GS: Ric1p and the Ypt6p GTPase function in a common pathway required for localization of trans-Golgi network membrane proteins. Mol Biol Cell 2001, 12: 13-26. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=30564&tool=pmcentrez&rendertype=abstract
Article
PubMed Central
CAS
PubMed
Google Scholar
Lorente-Rodríguez A, Heidtman M, Barlowe C: Multicopy suppressor analysis of thermosensitive YIP1 alleles implicates GOT1 in transport from the ER. J Cell Sci 2009,122(Pt 10):1540-50. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2680100&tool=pmcentrez&rendertype=abstract
Article
PubMed Central
PubMed
Google Scholar
Panic B, Whyte JRC, Munro S: The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr Biol: CB 2003,13(5):405-10. http://www.ncbi.nlm.nih.gov/pubmed/12620189 10.1016/S0960-9822(03)00091-5
Article
CAS
PubMed
Google Scholar
Gerrard SR, Levi BP, Stevens TH: Pep12p is a multifunctional yeast syntaxin that controls entry of biosynthetic, endocytic and retrograde traffic into the prevacuolar compartment. Traffic (Copenhagen, Denmark) 2000,1(3):259-69. http://www.ncbi.nlm.nih.gov/pubmed/11208109 10.1034/j.1600-0854.2000.010308.x
Article
CAS
Google Scholar
Trautwein M, Schindler C, Gauss R, Dengjel J, Hartmann E, Spang A: Arf1p, Chs5p and the ChAPs are required for export of specialized cargo from the Golgi. EMBO J 2006,25(5):943-54. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1409733&tool=pmcentrez&rendertype=abstract 10.1038/sj.emboj.7601007
Article
PubMed Central
CAS
PubMed
Google Scholar