Burridge K, Wittchen ES. The tension mounts: stress fibers as force-generating mechanotransducers. J Cell Biol. 2013;200(1):9–19.

Article
CAS
PubMed Central
PubMed
Google Scholar

Cramer LP, Siebert M, Mitchison TJ. Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force. J Cell Biol. 1997;136(6):1287–305.

Article
CAS
PubMed Central
PubMed
Google Scholar

Abercrombie M, Heaysman JE, Pegrum SM. The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp Cell Res. 1971;67(2):359–67.

Article
CAS
PubMed
Google Scholar

Buckley IK, Porter KR. Cytoplasmic fibrils in living cultured cells. A light and electron microscope study. Protoplasma. 1967;64(4):349–80.

Article
CAS
PubMed
Google Scholar

Weber K, Groeschel-Stewart U. Antibody to myosin: the specific visualization of myosin-containing filaments in nonmuscle cells. Proc Natl Acad Sci U S A. 1974;71(11):4561–4.

Article
CAS
PubMed Central
PubMed
Google Scholar

Lazarides E, Burridge K. Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell. 1975;6(3):289–98.

Article
CAS
PubMed
Google Scholar

Adams JC. Formation of stable microspikes containing actin and the 55 kDa actin bundling protein, fascin, is a consequence of cell adhesion to thrombospondin-1: implications for the anti-adhesive activities of thrombospondin-1. J Cell Sci. 1995;108(Pt 5):1977–90.

CAS
PubMed
Google Scholar

Wang K, Ash JF, Singer SJ. Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells. Proc Natl Acad Sci U S A. 1975;72(11):4483–6.

Article
CAS
PubMed Central
PubMed
Google Scholar

Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, Sheetz MP. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell. 2006;127(5):1015–26.

Article
CAS
PubMed Central
PubMed
Google Scholar

Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM. Nanoscale architecture of integrin-based cell adhesions. Nature. 2010;468(7323):580–84.

Burridge K, Guilluy C. Focal adhesions, stress fibers and mechanical tension. Exp Cell Res. 2016;343(1):14–20.

Article
CAS
PubMed
Google Scholar

Walcott S, Sun SX. A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells. Proc Natl Acad Sci U S A. 2010;107(17):7757–62.

Article
CAS
PubMed Central
PubMed
Google Scholar

Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70(3):389–99.

Article
CAS
PubMed
Google Scholar

Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999;285(5429):895–8.

Article
CAS
PubMed
Google Scholar

Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct. 2007;36:451–77.

Article
CAS
PubMed
Google Scholar

Bugyi B, Carlier MF. Control of actin filament treadmilling in cell motility. Annu Rev Biophys. 2010;39:449–70.

Article
CAS
PubMed
Google Scholar

Bershadsky AD, Ballestrem C, Carramusa L, Zilberman Y, Gilquin B, Khochbin S, Alexandrova AY, Verkhovsky AB, Shemesh T, Kozlov MM. Assembly and mechanosensory function of focal adhesions: experiments and models. Eur J Cell Biol. 2006;85(3-4):165–73.

Article
CAS
PubMed
Google Scholar

Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol. 1996;133(6):1403–15.

Article
CAS
PubMed
Google Scholar

Smith MA, Blankman E, Gardel ML, Luettjohann L, Waterman CM, Beckerle MC. A zyxin-mediated mechanism for actin stress fiber maintenance and repair. Dev Cell. 2010;19(3):365–76.

Article
CAS
PubMed Central
PubMed
Google Scholar

Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310(5751):1139–43.

Article
CAS
PubMed
Google Scholar

Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009;10(1):21–33.

Article
CAS
PubMed
Google Scholar

Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol. 2001;153(6):1175–86.

Article
CAS
PubMed Central
PubMed
Google Scholar

Hotulainen P, Lappalainen P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol. 2006;173(3):383–94.

Article
CAS
PubMed Central
PubMed
Google Scholar

Chen WT. Mechanism of retraction of the trailing edge during fibroblast movement. J Cell Biol. 1981;90(1):187–200.

Article
CAS
PubMed
Google Scholar

Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol. 2010;11(9):633–43.

Article
CAS
PubMed Central
PubMed
Google Scholar

Prager-Khoutorsky M, Lichtenstein A, Krishnan R, Rajendran K, Mayo A, Kam Z, Geiger B, Bershadsky AD. Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat Cell Biol. 2011;13(12):1457–65.

Article
CAS
PubMed
Google Scholar

Gilbert SF. Developmental Biology. 7th ed. Sunderland, MA. Sinauer Associates, Inc.; 2003.

Google Scholar

Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. Cell migration: integrating signals from front to back. Science. 2003;302(5651):1704–9.

Article
CAS
PubMed
Google Scholar

Tojkander S, Gateva G, Lappalainen P. Actin stress fibers--assembly, dynamics and biological roles. Nat Cell Biol. 2012;125(Pt 8):1855–64.

CAS
Google Scholar

Pollard TD, Cooper JA. Actin, a central player in cell shape and movement. Science. 2009;326(5957):1208–12.

Article
CAS
PubMed Central
PubMed
Google Scholar

Tee YH, Shemesh T, Thiagarajan V, Hariadi RF, Anderson KL, Page C, Volkmann N, Hanein D, Sivaramakrishnan S, Kozlov MM, et al. Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat Cell Biol. 2015;17(4):445–57.

Article
CAS
PubMed
Google Scholar

Vallenius T. Actin stress fibre subtypes in mesenchymal-migrating cells. Open Bio. 2013;3(6):130001.

Article
Google Scholar

Skau CT, Plotnikov SV, Doyle AD, Waterman CM. Inverted formin 2 in focal adhesions promotes dorsal stress fiber and fibrillar adhesion formation to drive extracellular matrix assembly. Proc Natl Acad Sci U S A. 2015;112(19):E2447–2456.

Article
CAS
PubMed Central
PubMed
Google Scholar

Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev. 2014;94(1):235–63.

Article
CAS
PubMed
Google Scholar

Breuer D, Nikoloski Z. DeFiNe: an optimisation-based method for robust disentangling of filamentous networks. Sci Rep. 2015;5:18267.

Article
CAS
PubMed Central
PubMed
Google Scholar

Helmstaedter M. Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat Methods. 2013;10(6):501–7.

Article
CAS
PubMed
Google Scholar

De J, Cheng L, Zhang X, Lin F, Li H, Ong KH, Yu W, Yu Y, Ahmed S. A graph-theoretical approach for tracing filamentary structures in neuronal and retinal images. IEEE Trans Med Imaging. 2016;35(1):257–72.

Article
PubMed
Google Scholar

Gupta M, Sarangi BR, Deschamps J, Nematbakhsh Y, Callan-Jones A, Margadant F, Mege RM, Lim CT, Voituriez R, Ladoux B. Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nat Commun. 2015;6:7525.

Article
CAS
PubMed Central
PubMed
Google Scholar

Rigort A, Gunther D, Hegerl R, Baum D, Weber B, Prohaska S, Medalia O, Baumeister W, Hege HC. Automated segmentation of electron tomograms for a quantitative description of actin filament networks. J Struct Biol. 2012;177(1):135–44.

Article
CAS
PubMed
Google Scholar

Wood ST, Dean BC, Dean D. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models. Med Image Anal. 2013;17(3):337–47.

Article
PubMed Central
PubMed
Google Scholar

Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci. 2003;116(Pt 7):1157–73.

Article
CAS
PubMed
Google Scholar

Unnikrishnan GU, Unnikrishnan VU, Reddy JN. Constitutive material modeling of cell: a micromechanics approach. J Biomech Eng. 2007;129(3):315–23.

Article
CAS
PubMed
Google Scholar

Peeters EA, Oomens CW, Bouten CV, Bader DL, Baaijens FP. Mechanical and failure properties of single attached cells under compression. J Biomech. 2005;38(8):1685–93.

Article
CAS
PubMed
Google Scholar

Karcher H, Lammerding J, Huang H, Lee RT, Kamm RD, Kaazempur-Mofrad MR. A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys J. 2003;85(5):3336–49.

Article
CAS
PubMed Central
PubMed
Google Scholar

Gouget CL, Hwang Y, Barakat AI. Model of cellular mechanotransduction via actin stress fibers. Biomech Model Mechanobiol. 2016;15(2):331–44.

Article
PubMed
Google Scholar

Yang Q, Karpikov A, Toomre D, Duncan JS. 3-D reconstruction of microtubules from multi-angle total internal reflection fluorescence microscopy using Bayesian framework. IEEE Trans Image Process. 2011;20(8):2248–59.

Article
PubMed
Google Scholar

Li HS, Shen T, Huang XL. Actin filament segmentation using dynamic programming. Lect Notes Comput Sc. 2011;6801:411–23.

Article
Google Scholar

Li HS, Shen TA, Vavylonis D, Huang XL. Actin filament segmentation using spatiotemporal active-surface and active-contour models. Med Image Comput Comput Assist Interv. 2010;6361(Pt I):86–94.

Google Scholar

Li HS, Shen T, Smith MB, Fujiwara I, Vavylonis D, Huang XL. Automated actin filament segmentation, tracking and tip elongation measurements based on open active contour models. 2009 Ieee International Symposium on Biomedical Imaging: From Nano to Macro, Vols 1 and 2. 2009. p. 1302–5.

Li HS, Shen T, Vavylonis D, Huang XL. Actin filament tracking based on particle filters and stretching open active contour models. Medical Image Computing and Computer-Assisted Intervention - Miccai 2009, Pt Ii, Proceedings. 2009;5762:673–81.

Xu T, Vavylonis D, Huang XL. 3D actin network centerline extraction with multiple active contours. Med Image Anal. 2014;18(2):272–84.

Article
PubMed
Google Scholar

Sargin ME, Altinok A, Kiris E, Feinstein SC, Wilson L, Rose K, Manjunath BS: Tracing microtubules in live cell images. 2007 4th Ieee International Symposium on Biomedical Imaging : Macro to Nano, Vols 1-3 2007:296-299

Smith MB, Li H, Shen T, Huang X, Yusuf E, Vavylonis D. Segmentation and tracking of cytoskeletal filaments using open active contours. Cytoskeleton. 2010;67(11):693–705.

Article
PubMed Central
PubMed
Google Scholar

Xu T, Li H, Shen T, Ojkic N, Vavylonis D, Huang X. Extraction and analysis of actin networks based on open active contour models. InBiomedical Imaging. From Nano to Macro, 2011 IEEE International Symposium. 2011. p. 1334–40. IEEE.

Zhang Z, Nishimura Y, Kanchanawong P. Extracting microtubule networks from superresolution single-molecule localization microscopy data. Mol Biol Cell. 2017;28(2):333–45.

Sandberg K, Brega M. Segmentation of thin structures in electron micrographs using orientation fields. J Struct Biol. 2007;157(2):403–15.

Article
CAS
PubMed
Google Scholar

Shin WD, Fischer RS, Kanchanawong P, Kim Y, Lim J, Meyers KA, Nishimura Y, Plotnikov SV, Thievessen I, Yarar D, et al. A Versatile, Multicolor Total Internal Reflection Fluorescence and Spinning Disk Confocal Microscope System for High-Resolution Live Cell Imaging. In: Goldman RD, Swedlow JR, Spector DL, editors. Live Cell Imaging: A Laboratory Manual. 2nd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2010.

Google Scholar

Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.

Article
Google Scholar

Matov A, Applegate K, Kumar P, Thoma C, Krek W, Danuser G, Wittmann T. Analysis of microtubule dynamic instability using a plus-end growth marker. Nat Methods. 2010;7(9):761–8.

Article
CAS
PubMed Central
PubMed
Google Scholar

Maraldi M, Valero C, Garikipati K. A computational study of stress fiber-focal adhesion dynamics governing cell contractility. Biophys J. 2014;106(9):1890–901.

Article
CAS
PubMed Central
PubMed
Google Scholar

Peterson LJ, Rajfur Z, Maddox AS, Freel CD, Chen Y, Edlund M, Otey C, Burridge K. Simultaneous stretching and contraction of stress fibers in vivo. Mol Biol Cell. 2004;15(7):3497–508.

Article
CAS
PubMed Central
PubMed
Google Scholar

Stachowiak MR, Smith MA, Blankman E, Chapin LM, Balcioglu HE, Wang S, Beckerle MC, O’Shaughnessy B. A mechanical-biochemical feedback loop regulates remodeling in the actin cytoskeleton. Proc Natl Acad Sci U S A. 2014;111(49):17528–33.

Article
CAS
PubMed Central
PubMed
Google Scholar

Thery M, Racine V, Piel M, Pepin A, Dimitrov A, Chen Y, Sibarita JB, Bornens M. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci U S A. 2006;103(52):19771–6.

Article
CAS
PubMed Central
PubMed
Google Scholar

Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, Chen AC, Sah RL, Taylor SS, Engler AJ, et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol. 2015;17(5):678–88.

Article
CAS
PubMed Central
PubMed
Google Scholar

Jiang M, Ji Q, McEwen BF. Enhancement of microtubules in em tomography. InBiomedical Imaging. Nano to Macro, 2004. IEEE International Symposium. 2004. p. 1123–26. IEEE.

Neumann MH, von Sachs R. Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra. 1997:38–76.

Mosaliganti KR, Noche RR, Xiong F, Swinburne IA, Megason SG. ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes. PLoS Comput Biol. 2012;8(12):e1002780.

Article
CAS
PubMed Central
PubMed
Google Scholar

Nikitina L, Ahammer H, Blaschitz A, Gismondi A, Glasner A, Schimek MG, Dohr G, Sedlmayr P. A new method for morphometric analysis of tissue distribution of mobile cells in relation to immobile tissue structures. PLoS One. 2011;6(3):e15086.

Article
CAS
PubMed Central
PubMed
Google Scholar

Yu H, Lim KP, Xiong S, Tan LP, Shim W. Functional morphometric analysis in cellular behaviors: shape and size matter. Adv Healthc Mater. 2013;2(9):1188–97.

Article
CAS
PubMed
Google Scholar

von Erlach TC, Hedegaard MA, Stevens MM. High resolution Raman spectroscopy mapping of stem cell micropatterns. Analyst. 2015;140(6):1798–803.

Article
Google Scholar

Tseng Q, Wang I, Duchemin-Pelletier E, Azioune A, Carpi N, Gao J, Filhol O, Piel M, Thery M, Balland M. A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab Chip. 2011;11(13):2231–40.

Article
CAS
PubMed
Google Scholar

Ponti A, Machacek M, Gupton SL, Waterman-Storer CM, Danuser G. Two distinct actin networks drive the protrusion of migrating cells. Science. 2004;305(5691):1782.

Article
CAS
PubMed
Google Scholar

Burnette DT, Manley S, Sengupta P, Sougrat R, Davidson MW, Kachar B, Lippincott-Schwartz J. A role for actin arcs in the leading-edge advance of migrating cells. Nat Cell Biol. 2011;13(4):371–81.

Article
CAS
PubMed Central
PubMed
Google Scholar