Diaz-Beltran L, Cano C, Wall D, Esteban FJ. Systems biology as a comparative approach to understand complex gene expression in neurological diseases. Behav Sci (Basel). 2013;3:253–72. https://doi.org/10.3390/bs3020253.
Article
PubMed
PubMed Central
Google Scholar
Costa FF. Big data in biomedicine. Drug Discov Today. 2014;19:433–40. https://doi.org/10.1016/j.drudis.2013.10.012.
Article
PubMed
Google Scholar
Diez D, Agustí A, Wheelock CE. Network analysis in the investigation of chronic respiratory diseases. From basics to application. Am J Respir Crit Care Med. 2014;190:981–8. https://doi.org/10.1164/rccm.201403-0421PP.
Article
PubMed
Google Scholar
Coveney PV, Dougherty ER, Highfield RR. Big data need big theory too. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences; 2016. p. 20160153. https://doi.org/10.1098/rsta.2016.0153.
Chapter
Google Scholar
Peek N, Holmes JH, Sun J. Technical Challenges for Big Data in Biomedicine and Health: Data Sources, Infrastructure, and Analytics. Yearb Med Inform. 2014;23:42–7. https://doi.org/10.15265/IY-2014-0018.
Article
Google Scholar
Martin-Sanchez F, Verspoor K. Big Data in Medicine Is Driving Big Changes. Yearb Med Inform. 2014;23:14–20. https://doi.org/10.15265/IY-2014-0020.
Article
Google Scholar
Gao E, Jiang Y, Li Z, Xue D, Zhang W. Association between high mobility group box-1 protein expression and cell death in acute pancreatitis. Mol Med Rep. 2017;15:4021–6. https://doi.org/10.3892/mmr.2017.6496.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu D, Rice CM, Wang X. Cancer bioinformatics: a new approach to systems clinical medicine. BMC Bioinformatics. 2012;13:71. https://doi.org/10.1186/1471-2105-13-71.
Article
PubMed
PubMed Central
Google Scholar
Sánchez-Valle J, Tejero H, Ibáñez K, Portero JL, Krallinger M, Al-Shahrour F, et al. A molecular hypothesis to explain direct and inverse co-morbidities between Alzheimer’s disease, Glioblastoma and Lung cancer. Sci Rep. 2017;7:4474. https://doi.org/10.1038/s41598-017-04400-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferreira González I, Urrútia G, Alonso-Coello P. Systematic Reviews and Meta-Analysis: Scientific Rationale and Interpretation. Rev Española Cardiol (English Ed). 2011;64:688–96. https://doi.org/10.1016/j.rec.2011.03.027.
Article
Google Scholar
Mosca E, Bertoli G, Piscitelli E, Vilardo L, Reinbold RA, Zucchi I, et al. Identification of functionally related genes using data mining and data integration: a breast cancer case study. BMC Bioinformatics. 2009;10:S8. https://doi.org/10.1186/1471-2105-10-S12-S8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cervantes-Gracia K, Husi H. Integrative analysis of multiple sclerosis using a systems biology approach. Sci Rep. 2018;8:5633. https://doi.org/10.1038/s41598-018-24032-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou X-D, An K, Wu Y-D, Ye Z-Q. PPI network analyses of human WD40 protein family systematically reveal their tendency to assemble complexes and facilitate the complex predictions. BMC Syst Biol. 2018;12:41. https://doi.org/10.1186/s12918-018-0567-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Safari-Alighiarloo N, Taghizadeh M, Tabatabaei SM, Shahsavari S, Namaki S, Khodakarim S, et al. Identification of new key genes for type 1 diabetes through construction and analysis of protein-protein interaction networks based on blood and pancreatic islet transcriptomes. J Diabetes. 2017;9:764–77. https://doi.org/10.1111/1753-0407.12483.
Article
CAS
PubMed
Google Scholar
Quan Z, Quan Y, Wei B, Fang D, Yu W, Jia H, et al. Protein-protein interaction network and mechanism analysis in ischemic stroke. Mol Med Rep. 2015;11:29–36. https://doi.org/10.3892/mmr.2014.2696.
Article
CAS
PubMed
Google Scholar
Wuchty S, Almaas E. Peeling the yeast protein network. Proteomics. 2005;5:444–9. https://doi.org/10.1002/pmic.200400962.
Article
CAS
PubMed
Google Scholar
Goñi J, Esteban FJ, de Mendizábal NV, Sepulcre J, Ardanza-Trevijano S, Agirrezabal I, et al. A computational analysis of protein-protein interaction networks in neurodegenerative diseases. BMC Syst Biol. 2008;2:52. https://doi.org/10.1186/1752-0509-2-52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Silvestre D, Brambilla F, Scardoni G, Brunetti P, Motta S, Matteucci M, et al. Proteomics-based network analysis characterizes biological processes and pathways activated by preconditioned mesenchymal stem cells in cardiac repair mechanisms. Biochim Biophys Acta Gen Subj. 2017;1861:1190–9. https://doi.org/10.1016/j.bbagen.2017.02.006.
Article
CAS
PubMed
Google Scholar
Stoilova-McPhie S, Ali S, Laezza F. Protein-protein interactions as new targets for Ion Channel drug discovery. Austin J Pharmacol Ther. 2013;1:1–6.
Google Scholar
Oughtred R, Chatr-aryamontri A, Breitkreutz B-J, Chang CS, Rust JM, Theesfeld CL, et al. BioGRID | Database of Protein, Chemical, and Genetic Interactions. Cold Spring Harb Protoc. 2016, 2016:pdb.prot088880. https://doi.org/10.1101/pdb.prot088880.
Article
PubMed
PubMed Central
Google Scholar
Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40:W597–603. https://doi.org/10.1093/nar/gks400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8. https://doi.org/10.1093/nar/gkw937.
Article
CAS
PubMed
Google Scholar
Shannon P. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504. https://doi.org/10.1101/gr.1239303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki RA, Huang DW, Sherman BTLRA. DAVID Functional Annotation Bioinformatics Microarray Analysis. Nat Protoc. 2009;4:44–57 doi:4(1):44–57.
Article
CAS
Google Scholar
Gomollón F, Quintero R, Bastidas A, Ilzarbe D, Pintor L, Ilzarbe L, et al. Inflammatory bowel disease and eating disorders: a systematized review of comorbidity. J Psychosom Res. 2017;102:47–53. https://doi.org/10.1016/j.jpsychores.2017.09.006.
Article
PubMed
Google Scholar
Yang C, Li C, Wang Q, Chung D, Zhao H. Implications of pleiotropy: challenges and opportunities for mining big data in biomedicine. Front Genet. 2015;6:229. https://doi.org/10.3389/fgene.2015.00229.
Article
CAS
PubMed
PubMed Central
Google Scholar
Musgaard M, Paramo T, Domicevica L, Andersen OJ, Biggin PC. Insights into channel dysfunction from modelling and molecular dynamics simulations. Neuropharmacology. 2018;132:20–30. https://doi.org/10.1016/j.neuropharm.2017.06.030.
Article
CAS
PubMed
Google Scholar
Spillane J, Kullmann DM, Hanna MG. Genetic neurological channelopathies: molecular genetics and clinical phenotypes. J Neurol Neurosurg Psychiatry. 2016;87:37–48.
CAS
PubMed
Google Scholar
Schorge S. Channelopathies go above and beyond the channels. Neuropharmacology. 2018;132:1–2. https://doi.org/10.1016/j.neuropharm.2018.02.011.
Article
CAS
PubMed
Google Scholar
Yu W, Clyne M, Khoury MJ, Gwinn M. Phenopedia and Genopedia: disease-centered and gene-centered views of the evolving knowledge of human genetic associations. Bioinformatics. 2010;26:145–6. https://doi.org/10.1093/bioinformatics/btp618.
Article
CAS
PubMed
Google Scholar
Joy MP, Brock A, Ingber DE, Huang S. High-Betweenness proteins in the yeast protein interaction network. J Biomed Biotechnol. 2005;2005:96–103. https://doi.org/10.1155/JBB.2005.96.
Article
CAS
PubMed
PubMed Central
Google Scholar
VIB / UGent, Bioinformatics & Evolutionary Genomics. Draw Venn Diagram. http://bioinformatics.psb.ugent.be/webtools/Venn/. Accessed 18 Nov 2018.
Medical Subject Headings - MeSH. https://www.nlm.nih.gov/mesh/. Accessed 8 Jun 2017.
Zeng Z, Zhou J, Hou Y, Liang X, Zhang Z, Xu X, et al. Electrophysiological characteristics of a SCN5A voltage sensors mutation R1629Q associated with Brugada syndrome. PLoS One. 2013;8:e78382. https://doi.org/10.1371/journal.pone.0078382.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reactome Pathway Database. http://www.reactome.org/. Accessed 5 Jun 2017.
McKeown L, Swanton L, Robinson P, Jones OT. Surface expression and distribution of voltage-gated potassium channels in neurons (review). Mol Membr Biol. 2008;25:332–43. https://doi.org/10.1080/09687680801992470.
Article
CAS
PubMed
Google Scholar
Pongs O, Schwarz JR. Ancillary subunits associated with voltage-dependent K + channels. Physiol Rev. 2010;90:755–96. https://doi.org/10.1152/physrev.00020.2009.
Article
CAS
PubMed
Google Scholar
Kapfhamer D, Miller DE, Lambert S, Bennett V, Glover TW, Burmeister M. Chromosomal localization of the AnkyrinG gene (ANK3/Ank3) to human 10q21 and mouse 10. Genomics. 1995;27:189–91. https://doi.org/10.1006/geno.1995.1023.
Article
CAS
PubMed
Google Scholar
Whittard JD, Sakurai T, Cassella MR, Gazdoiu M, Felsenfeld DP. MAP kinase pathway–dependent phosphorylation of the L1-CAM Ankyrin binding site regulates neuronal growth. Mol Biol Cell. 2006;17:2696–706. https://doi.org/10.1091/mbc.e06-01-0090.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J. Channelopathies. Korean J Pediatr. 2014;57:1. https://doi.org/10.3345/kjp.2014.57.1.1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hubner CA. Ion channel diseases. Hum Mol Genet. 2002;11:2435–45. https://doi.org/10.1093/hmg/11.20.2435.
Article
PubMed
Google Scholar
Kullmann DM. Neurological Channelopathies. Annu Rev Neurosci. 2010;33:151–72. https://doi.org/10.1146/annurev-neuro-060909-153122.
Article
CAS
PubMed
Google Scholar
Cannon SC. Pathomechanisms in channelopathies of skeletal muscle and brain. Annu Rev Neurosci. 2006;29:387–415. https://doi.org/10.1146/annurev.neuro.29.051605.112815.
Article
CAS
PubMed
Google Scholar
Brouwer BA, Merkies ISJ, Gerrits MM, Waxman SG, Hoeijmakers JGJ, Faber CG. Painful neuropathies: the emerging role of sodium channelopathies. J Peripher Nerv Syst. 2014;19:53–65. https://doi.org/10.1111/jns5.12071.
Article
CAS
PubMed
Google Scholar
Baruscotti M, Bottelli G, Milanesi R, DiFrancesco JC, DiFrancesco D. HCN-related channelopathies. Pflügers Arch Eur J Physiol. 2010;460:405–15. https://doi.org/10.1007/s00424-010-0810-8.
Article
CAS
Google Scholar
Bidaud I, Lory P. Hallmarks of the channelopathies associated with L-type calcium channels : A focus on the Timothy mutations in Cav1.2 channels. Biochimie. 2011;93:2080–6. https://doi.org/10.1016/j.biochi.2011.05.015.
Article
CAS
PubMed
Google Scholar
Mohler PJ, Rivolta I, Napolitano C, LeMaillet G, Lambert S, Priori SG, et al. Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc Natl Acad Sci. 2004;101:17533–8. https://doi.org/10.1073/pnas.0403711101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kretschmer T, England JD, Happel LT, Liu ZP, Thouron CL, Nguyen DH, et al. Ankyrin G and voltage gated sodium channels colocalize in human neuroma – key proteins of membrane remodeling after axonal injury. Neurosci Lett. 2002;323:151–5. https://doi.org/10.1016/S0304-3940(02)00021-6.
Article
CAS
PubMed
Google Scholar
Xu M, Cooper EC. An Ankyrin-G N-terminal gate and protein kinase CK2 dually regulate binding of voltage-gated sodium and KCNQ2/3 potassium channels. J Biol Chem. 2015;290:16619–32. https://doi.org/10.1074/jbc.M115.638932.
Article
CAS
PubMed
PubMed Central
Google Scholar
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: the ion channel perspective. Autoimmun Rev. 2016;15:585–620. https://doi.org/10.1016/j.autrev.2016.02.004.
Article
CAS
PubMed
Google Scholar
Jeong H, Mason SP, Barabási A-L, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411:41–2. https://doi.org/10.1038/35075138.
Article
CAS
PubMed
Google Scholar
Newman MEJ. A measure of betweenness centrality based on random walks. Soc Networks. 2005;27:39–54. https://doi.org/10.1016/j.socnet.2004.11.009.
Article
Google Scholar
Alvarez-Ponce D, Feyertag F, Chakraborty S. Position matters: network centrality considerably impacts rates of protein evolution in the human protein–protein interaction network. Genome Biol Evol. 2017;9:1742–56. https://doi.org/10.1093/gbe/evx117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catterall WA. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev. 2005;57:397–409. https://doi.org/10.1124/pr.57.4.4.
Article
CAS
PubMed
Google Scholar
Gutman GA. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev. 2005;57:473–508. https://doi.org/10.1124/pr.57.4.10.
Article
CAS
PubMed
Google Scholar
Ramos EM, Hoffman D, Junkins HA, Maglott D, Phan L, Sherry ST, et al. Phenotype-genotype integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources. Eur J Hum Genet 2014. Accessed 18 Nov 2018.
Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37(Web Server issue):W305–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191–8.
Article
PubMed
PubMed Central
Google Scholar