Robinson J, et al. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 2015;43:D423-431. https://doi.org/10.1093/nar/gku1161.
Article
CAS
PubMed
Google Scholar
Halldórsson, B. V. et al. A survey of computational methods for determining haplotypes. In: Istrail S., Waterman M., Clark A. (eds) Computational methods for SNPs and haplotype inference. RSNPsH 2002. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg. 2983, 26–47, doi.org/https://doi.org/10.1007/1978-1003-1540-24719-24717_24713 (2004).
Al Bkhetan Z, Zobel J, Kowalczyk A, Verspoor K, Goudey B. Exploring effective approaches for haplotype block phasing. BMC Bioinform. 2019;20:540. https://doi.org/10.1186/s12859-019-3095-8.
Article
Google Scholar
Clark AG. Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol. 1990;7:111–22. https://doi.org/10.1093/oxfordjournals.molbev.a040591.
Article
CAS
PubMed
Google Scholar
Glusman G, Cox HC, Roach JC. Whole-genome haplotyping approaches and genomic medicine. Genome Med. 2014;6:73. https://doi.org/10.1186/s13073-014-0073-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roach JC, et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science. 2010;328:636–9. https://doi.org/10.1126/science.1186802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma L, et al. Direct determination of molecular haplotypes by chromosome microdissection. Nat Methods. 2010;7:299–301. https://doi.org/10.1038/nmeth.1443.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Chen X, Wong WH. Completely phased genome sequencing through chromosome sorting. Proc Natl Acad Sci U S A. 2011;108:12–7. https://doi.org/10.1073/pnas.1016725108.
Article
PubMed
Google Scholar
Kirkness EF, et al. Sequencing of isolated sperm cells for direct haplotyping of a human genome. Genome Res. 2013;23:826–32. https://doi.org/10.1101/gr.144600.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arbeithuber, B., Heissl, A. & Tiemann-Boege, I. in Haplotyping: Methods and Protocols (eds Irene Tiemann-Boege & Andrea Betancourt) 3–22 (Springer New York, 2017).
Zheng GX, et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol. 2016;34:303–11. https://doi.org/10.1038/nbt.3432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteom Bioinform. 2015;13:278–89. https://doi.org/10.1016/j.gpb.2015.08.002.
Article
Google Scholar
Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17:239. https://doi.org/10.1186/s13059-016-1103-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li LH, et al. Long contiguous stretches of homozygosity in the human genome. Hum Mutat. 2006;27:1115–21. https://doi.org/10.1002/humu.20399.
Article
CAS
PubMed
Google Scholar
Gibson J, Morton NE, Collins A. Extended tracts of homozygosity in outbred human populations. Hum Mol Genet. 2006;15:789–95. https://doi.org/10.1093/hmg/ddi493.
Article
CAS
PubMed
Google Scholar
Nibbs RJB, Graham GJ. Immune regulation by atypical chemokine receptors. Nat Rev Immunol. 2013;13:815–29. https://doi.org/10.1038/nri3544.
Article
CAS
PubMed
Google Scholar
Horuk, R. The Duffy antigen receptor for chemokines DARC/ACKR1. Front Immunol 6, doi: https://doi.org/10.3389/fimmu.2015.00279 (2015).
Miller LH, Mason SJ, Dvorak JA, Mcginniss MH, Rothman IK. Erythrocyte receptors for (Plasmodium-Knowlesi) malaria - duffy blood-group determinants. Science. 1975;189:561–3. https://doi.org/10.1126/science.1145213.
Article
CAS
PubMed
Google Scholar
Meny GM. The Duffy blood group system: a review. Immunohematology. 2010;26:51–6.
Article
CAS
PubMed
Google Scholar
Meny GM. An update on the Duffy blood group system. Immunohematology. 2019;35:11–2.
Article
PubMed
Google Scholar
Schmid P, Ravenell KR, Sheldon SL, Flegel WA. DARC alleles and Duffy phenotypes in African Americans. Transfusion. 2012;52:1260–7. https://doi.org/10.1111/j.1537-2995.2011.03431.x.
Article
CAS
PubMed
Google Scholar
Fichou Y, et al. Defining blood group gene reference alleles by long-read sequencing: proof of concept in the ACKR1 gene encoding the duffy antigens. Transfusion Med Hemotherapy. 2020;47:23–32. https://doi.org/10.1159/000504584.
Article
Google Scholar
Yin Q, Srivastava K, Gebremedhin A, Makuria AT, Flegel WA. Long-range haplotype analysis of the malaria parasite receptor gene ACKR1 in an East-African population. Hum Genome Var. 2018;5:26. https://doi.org/10.1038/s41439-018-0024-8.
Article
PubMed
PubMed Central
Google Scholar
Srivastava K, et al. ACKR1 alleles at 5.6 kb in a well-characterized renewable US Food and Drug Administration (FDA) reference panel for standardization of blood group genotyping. J Mol Diagn. 2020;22:1272-1279. doi:https://doi.org/10.1016/j.jmoldx.2020.06.014.
Prüfer K, et al. The complete genome sequence of a Neanderthal from the Altai mountains. Nature. 2014;505:43–9. https://doi.org/10.1038/nature12886.
Article
CAS
PubMed
Google Scholar
Prüfer K, et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science. 2017;358:655–8. https://doi.org/10.1126/science.aao1887.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mafessoni F, et al. A high-coverage Neandertal genome from Chagyrskaya Cave. Proc Natl Acad Sci U S A. 2020;117:15132–6. https://doi.org/10.1073/pnas.2004944117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature. 2020. https://doi.org/10.1038/s41586-020-2818-3.
Article
PubMed
Google Scholar
Genomes Project, C. et al. A global reference for human genetic variation. Nature. 2015;526:68–74. https://doi.org/10.1038/nature15393.
Sudmant PH, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526:75–81. https://doi.org/10.1038/nature15394.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics (Oxford, England). 2011;27:2987–93. https://doi.org/10.1093/bioinformatics/btr509.
Article
CAS
Google Scholar
Sherry ST, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11. https://doi.org/10.1093/nar/29.1.308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson JT, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6. https://doi.org/10.1038/nbt.1754.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walter K, et al. The UK10K project identifies rare variants in health and disease. Nature. 2015;526:82–90. https://doi.org/10.1038/nature14962.
Article
CAS
PubMed
Google Scholar
Gurdasani D, et al. The African genome variation project shapes medical genetics in Africa. Nature. 2015;517:327–32. https://doi.org/10.1038/nature13997.
Article
CAS
PubMed
Google Scholar
Denny JC, et al. The “All of Us” research program. N Engl J Med. 2019;381:668–76. https://doi.org/10.1056/NEJMsr1809937.
Article
PubMed
Google Scholar
Mack SJ, et al. Common and well-documented HLA alleles: 2012 update to the CWD catalogue. Tissue Antigens. 2013;81:194–203. https://doi.org/10.1111/tan.12093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tay GK, et al. Matching for MHC haplotypes results in improved survival following unrelated bone marrow transplantation. Bone Marrow Transpl. 1995;15:381–5.
CAS
Google Scholar
Chou ST, Liem RI, Thompson AA. Challenges of alloimmunization in patients with haemoglobinopathies. Br J Haematol. 2012;159:394–404. https://doi.org/10.1111/bjh.12061.
Article
CAS
PubMed
Google Scholar
Tournamille C, et al. Partial C antigen in sickle cell disease patients: clinical relevance and prevention of alloimmunization. Transfusion. 2010;50:13–9. https://doi.org/10.1111/j.1537-2995.2009.02382.x.
Article
CAS
PubMed
Google Scholar
Allen ES, et al. Immunohaematological complications in patients with sickle cell disease after haemopoietic progenitor cell transplantation: a prospective, single-centre, observational study. Lancet Haematol. 2017;4:e553–61. https://doi.org/10.1016/s2352-3026(17)30196-5.
Article
PubMed
PubMed Central
Google Scholar
Slater N, et al. Power laws for heavy-tailed distributions: modeling allele and haplotype diversity for the national marrow donor program. PLoS Comput Biol. 2015. https://doi.org/10.1371/journal.pcbi.1004204.
Article
PubMed
PubMed Central
Google Scholar
Vallender EJ, Lahn BT. Positive selection on the human genome. Hum Mol Genet. 2004. https://doi.org/10.1093/hmg/ddh253.
Article
PubMed
Google Scholar
Gibson G, Muse SV. A primer of genome science. Sunderland, MA: Sinauer Associates; 2009.
Google Scholar
Filosa S, et al. G6PD haplotypes spanning Xq28 from F8C to red/green color vision. Genomics. 1993;17:6–14. https://doi.org/10.1006/geno.1993.1276.
Article
CAS
PubMed
Google Scholar
Li MJ, Yan B, Sham PC, Wang J. Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression. Brief Bioinform. 2015;16:393–412. https://doi.org/10.1093/bib/bbu018.
Article
CAS
PubMed
Google Scholar
Gudbjartsson DF, et al. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet. 2015;47:435–44. https://doi.org/10.1038/ng.3247.
Article
CAS
PubMed
Google Scholar
The International HapMap Project. Nature. 2003;426:789–96. https://doi.org/10.1038/nature02168.
Article
CAS
Google Scholar
Gusev A, et al. The architecture of long-range haplotypes shared within and across populations. Mol Biol Evol. 2012;29:473–86. https://doi.org/10.1093/molbev/msr133.
Article
CAS
PubMed
Google Scholar
Zhang C, et al. A whole genome long-range haplotype (WGLRH) test for detecting imprints of positive selection in human populations. Bioinformatics (Oxford, England). 2006;22:2122–8. https://doi.org/10.1093/bioinformatics/btl365.
Article
CAS
Google Scholar
Stabentheiner S, et al. Overcoming methodical limits of standard RHD genotyping by next-generation sequencing. Vox Sang. 2011;100:381–8. https://doi.org/10.1111/j.1423-0410.2010.01444.x.
Article
CAS
PubMed
Google Scholar
Rieneck K, et al. Next-generation sequencing: proof of concept for antenatal prediction of the fetal Kell blood group phenotype from cell-free fetal DNA in maternal plasma. Transfusion. 2013;53:2892–8. https://doi.org/10.1111/trf.12172.
Article
CAS
PubMed
Google Scholar
Fichou Y, Audrézet MP, Guéguen P, Le Maréchal C, Férec C. Next-generation sequencing is a credible strategy for blood group genotyping. Br J Haematol. 2014;167:554–62. https://doi.org/10.1111/bjh.13084.
Article
CAS
PubMed
Google Scholar
Wieckhusen C, Bugert P. 454-sequencing for the KEL, JR, and LAN blood groups. Methods Mol Biol. 2015;1310:123–133. doi:https://doi.org/10.1007/978-1-4939-2690-9_11.
Giollo M, et al. BOOGIE: predicting blood groups from high throughput sequencing data. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0124579.
Article
PubMed
PubMed Central
Google Scholar
Lane WJ, et al. Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle. Transfusion. 2016;56:743–54. https://doi.org/10.1111/trf.13416.
Article
CAS
PubMed
Google Scholar
Lang K, et al. ABO allele-level frequency estimation based on population-scale genotyping by next generation sequencing. BMC Genomics. 2016;17:374. https://doi.org/10.1186/s12864-016-2687-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fichou Y, Mariez M, Le Maréchal C, Férec C. The experience of extended blood group genotyping by next-generation sequencing (NGS): investigation of patients with sickle-cell disease. Vox Sang. 2016;111:418–24. https://doi.org/10.1111/vox.12432.
Article
CAS
PubMed
Google Scholar
Möller M, Jöud M, Storry JR, Olsson ML. Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 Genomes Project. Blood Adv. 2016;1:240–9. https://doi.org/10.1182/bloodadvances.2016001867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baronas J, Westhoff C, Vege S, Mah H, Aguad M. RHD zygosity determination from whole genome sequencing data. J Blood Disord Transfus. 2016;7:1–5.
Article
Google Scholar
Schoeman EM, et al. Evaluation of targeted exome sequencing for 28 protein-based blood group systems, including the homologous gene systems, for blood group genotyping. Transfusion. 2017;57:1078–88. https://doi.org/10.1111/trf.14054.
Article
CAS
PubMed
Google Scholar
Dezan MR, et al. RHD and RHCE genotyping by next-generation sequencing is an effective strategy to identify molecular variants within sickle cell disease patients. Blood Cells Mol Dis. 2017;65:8–15. https://doi.org/10.1016/j.bcmd.2017.03.014.
Article
CAS
PubMed
Google Scholar
Chou ST, et al. Whole-exome sequencing for RH genotyping and alloimmunization risk in children with sickle cell anemia. Blood Adv. 2017;1:1414–22. https://doi.org/10.1182/bloodadvances.2017007898.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jakobsen MA, Dellgren C, Sheppard C, Yazer M, Sprogøe U. The use of next-generation sequencing for the determination of rare blood group genotypes. Transfus Med. 2019;29:162–8. https://doi.org/10.1111/tme.12496.
Article
CAS
PubMed
Google Scholar
Schoeman EM, et al. Targeted exome sequencing defines novel and rare variants in complex blood group serology cases for a red blood cell reference laboratory setting. Transfusion. 2018;58:284–93. https://doi.org/10.1111/trf.14393.
Article
CAS
PubMed
Google Scholar
Orzińska A, et al. A preliminary evaluation of next-generation sequencing as a screening tool for targeted genotyping of erythrocyte and platelet antigens in blood donors. Blood Transf. 2018;16:285–292. https://doi.org/10.2450/2017.0253-16.
Lane WJ, et al. Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study. Lancet Haematol. 2018;5:e241–51. https://doi.org/10.1016/s2352-3026(18)30053-x.
Wheeler MM, et al. Genomic characterization of the RH locus detects complex and novel structural variation in multi-ethnic cohorts. Genet Med. 2019;21:477–86. https://doi.org/10.1038/s41436-018-0074-9.
Article
CAS
PubMed
Google Scholar
Wu PC, et al. ABO genotyping with next-generation sequencing to resolve heterogeneity in donors with serology discrepancies. Transfusion. 2018;58:2232–42. https://doi.org/10.1111/trf.14654.
Article
CAS
PubMed
Google Scholar
Montemayor-Garcia C, et al. Genomic coordinates and continental distribution of 120 blood group variants reported by the 1000 Genomes Project. Transfusion. 2018;58:2693–704. https://doi.org/10.1111/trf.14953.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tounsi WA, Madgett TE, Avent ND. Complete RHD next-generation sequencing: establishment of reference RHD alleles. Blood Adv. 2018;2:2713–23. https://doi.org/10.1182/bloodadvances.2018017871.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoeman EM, Roulis EV, Perry MA, Flower RL, Hyland CA. Comprehensive blood group antigen profile predictions for Western Desert Indigenous Australians from whole exome sequence data. Transfusion. 2019;59:768–78. https://doi.org/10.1111/trf.15047.
Article
CAS
PubMed
Google Scholar
Orzińska A, et al. Prediction of fetal blood group and platelet antigens from maternal plasma using next-generation sequencing. Transfusion. 2019;59:1102–7. https://doi.org/10.1111/trf.15116.
Article
CAS
PubMed
Google Scholar
Lane WJ, et al. Automated typing of red blood cell and platelet antigens from whole exome sequences. Transfusion. 2019;59:3253–63. https://doi.org/10.1111/trf.15473.
Article
CAS
PubMed
Google Scholar
Halls JBL, et al. Overcoming the challenges of interpreting complex and uncommon RH alleles from whole genomes. Vox Sang. 2020. https://doi.org/10.1111/vox.12963.
Article
PubMed
Google Scholar
Fürst D, et al. Next-generation sequencing technologies in blood group typing. Transf Med Hemother. 2020;47:4–13. https://doi.org/10.1159/000504765.
Wu PC, Pai S-C, Chen P-L. Blood group genotyping goes next generation: featuring ABO, RH and MNS. ISBT Sci Ser. 2018;13:290–7. https://doi.org/10.1111/voxs.12426.
Article
Google Scholar
Orzinska A, Guz K, Brojer E. Potential of next-generation sequencing to match blood group antigens for transfusion. Int J Clin Transfus Med. 2019;7:11–22.
Article
Google Scholar
Barone JC, et al. HLA-genotyping of clinical specimens using Ion Torrent-based NGS. Hum Immunol. 2015;76:903–9. https://doi.org/10.1016/j.humimm.2015.09.014.
Article
CAS
PubMed
Google Scholar
Reid ME. Transfusion in the age of molecular diagnostics. Hematol Am Soc Hematol Educ Program. 2009;2009:171–7. https://doi.org/10.1182/asheducation-2009.1.171.
Tournamille C, Colin Y, Cartron JP, Le Van Kim C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet. 1995;10;224–8. https://doi.org/10.1038/ng0695-224.
Lucien N, et al. Characterization of the gene encoding the human Kidd blood group/urea transporter protein. Evidence for splice site mutations in Jknull individuals. J Biol Chem. 1998;273:12973–80. https://doi.org/10.1074/jbc.273.21.12973.
Lomas-Francis C, Reid ME. The Dombrock blood group system: a review. Immunohematology. 2010;26:71–8.
Article
CAS
PubMed
Google Scholar
Christophersen MK, et al. SMIM1 variants rs1175550 and rs143702418 independently modulate Vel blood group antigen expression. Sci Rep. 2017;7:40451. https://doi.org/10.1038/srep40451.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gabriel SB, et al. The structure of haplotype blocks in the human genome. Science. 2002;296:2225–9. https://doi.org/10.1126/science.1069424.
Article
CAS
PubMed
Google Scholar
Wall JD, Pritchard JK. Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet. 2003;4:587–97. https://doi.org/10.1038/nrg1123.
Article
CAS
PubMed
Google Scholar
Jin Y, Wang J, Bachtiar M, Chong SS, Lee CGL. Architecture of polymorphisms in the human genome reveals functionally important and positively selected variants in immune response and drug transporter genes. Hum Genomics. 2018;12:43. https://doi.org/10.1186/s40246-018-0175-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller LH, Mason SJ, Clyde DF, McGinniss MH. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med. 1976;295:302–304. https://doi.org/10.1056/nejm197608052950602.
Chaudhuri A, et al. Purification and characterization of an erythrocyte membrane protein complex carrying Duffy blood group antigenicity. Possible receptor for Plasmodium vivax and Plasmodium knowlesi malaria parasite. J Biol Chem. 1989;264:13770–13774.
Hadley TJ, Peiper SC. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood. 1997;89:3077–91.
Article
CAS
PubMed
Google Scholar
Hamblin MT, Di Rienzo A. Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am J Hum Genet. 2000;66:1669–79. https://doi.org/10.1086/302879.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suk EK, et al. A comprehensively molecular haplotype-resolved genome of a European individual. Genome Res. 2011;21:1672–85. https://doi.org/10.1101/gr.125047.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srivastava K, Lee E, Owens E, Rujirojindakul P, Flegel WA. Full-length nucleotide sequence of ERMAP alleles encoding Scianna (SC) antigens. Transfusion. 2016;56:3047–54. https://doi.org/10.1111/trf.13801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin Q, et al. Molecular analysis of the ICAM4 gene in an autochthonous East African population. Transfusion. 2019;59:1880–1. https://doi.org/10.1111/trf.15217.
Article
PubMed
PubMed Central
Google Scholar
https://www.isbtweb.org/. (2020).