Wetzel R: Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. Journal of molecular biology. 2012, 421 (4-5): 466-490. 10.1016/j.jmb.2012.01.030.
Article
PubMed Central
CAS
PubMed
Google Scholar
Matilla-Duenas A, Corral-Juan M, Volpini V, Sanchez I: The spinocerebellar ataxias: clinical aspects and molecular genetics. Advances in experimental medicine and biology. 2012, 724: 351-374. 10.1007/978-1-4614-0653-2_27.
Article
CAS
PubMed
Google Scholar
Zoghbi HY, Orr HT: Glutamine repeats and neurodegeneration. Annual review of neuroscience. 2000, 23: 217-247. 10.1146/annurev.neuro.23.1.217.
Article
CAS
PubMed
Google Scholar
Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, Chen G, Weatherspoon MR, Clark HB, Ebner TJ: Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nature genetics. 2006, 38 (7): 758-769. 10.1038/ng1827.
Article
CAS
PubMed
Google Scholar
Michalik A, Van Broeckhoven C: Pathogenesis of polyglutamine disorders: aggregation revisited. Human molecular genetics. 2003, 12 (Spec No 2): R173-186.
Article
CAS
PubMed
Google Scholar
Albrecht M, Golatta M, Wullner U, Lengauer T: Structural and functional analysis of ataxin-2 and ataxin-3. European journal of biochemistry / FEBS. 2004, 271 (15): 3155-3170. 10.1111/j.1432-1033.2004.04245.x.
Article
CAS
PubMed
Google Scholar
Williams AJ, Paulson HL: Polyglutamine neurodegeneration: protein misfolding revisited. Trends in neurosciences. 2008, 31 (10): 521-528. 10.1016/j.tins.2008.07.004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Magana JJ, Velazquez-Perez L, Cisneros B: Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives. Molecular neurobiology. 2013, 47 (1): 90-104. 10.1007/s12035-012-8348-8.
Article
CAS
PubMed
Google Scholar
Walters RH, Murphy RM: Examining polyglutamine peptide length: a connection between collapsed conformations and increased aggregation. Journal of molecular biology. 2009, 393 (4): 978-992. 10.1016/j.jmb.2009.08.034.
Article
PubMed Central
CAS
PubMed
Google Scholar
Garden GA, La Spada AR: Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration. Cerebellum (London, England). 2008, 7 (2): 138-149. 10.1007/s12311-008-0027-y.
Article
CAS
Google Scholar
Costa Mdo C, Paulson HL: Toward understanding Machado-Joseph disease. Progress in neurobiology. 2012, 97 (2): 239-257. 10.1016/j.pneurobio.2011.11.006.
Article
PubMed
Google Scholar
Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR: Huntington's disease: from pathology and genetics to potential therapies. The Biochemical journal. 2008, 412 (2): 191-209. 10.1042/BJ20071619.
Article
CAS
PubMed
Google Scholar
Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A: Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature genetics. 1996, 14 (3): 269-276. 10.1038/ng1196-269.
Article
CAS
PubMed
Google Scholar
Zoghbi HY, Jodice C, Sandkuijl LA, Kwiatkowski TJ, McCall AE, Huntoon SA, Lulli P, Spadaro M, Litt M, Cann HM: The gene for autosomal dominant spinocerebellar ataxia (SCA1) maps telomeric to the HLA complex and is closely linked to the D6S89 locus in three large kindreds. American journal of human genetics. 1991, 49 (1): 23-30.
PubMed Central
CAS
PubMed
Google Scholar
Ikeda Y, Dalton JC, Day JW, Ranum LPW: Spinocerebellar Ataxia Type 8. GeneReviews. Edited by: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K. Seattle WA. 2001, University of Washington, Seattle
Google Scholar
Nozaki K, Onodera O, Takano H, Tsuji S: Amino acid sequences flanking polyglutamine stretches influence their potential for aggregate formation. Neuroreport. 2001, 12 (15): 3357-3364. 10.1097/00001756-200110290-00042.
Article
CAS
PubMed
Google Scholar
Pulst SM, Santos N, Wang D, Yang H, Huynh D, Velazquez L, Figueroa KP: Spinocerebellar ataxia type 2: polyQ repeat variation in the CACNA1A calcium channel modifies age of onset. Brain : a journal of neurology. 2005, 128 (Pt 10): 2297-2303.
Article
Google Scholar
Finke JM, Cheung MS, Onuchic JN: A structural model of polyglutamine determined from a host-guest method combining experiments and landscape theory. Biophysical journal. 2004, 87 (3): 1900-1918. 10.1529/biophysj.104.041533.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li X, Li H, Li X-J: Intracellular degradation of misfolded proteins in polyglutamine neurodegenerative diseases. Brain Research Reviews. 2008, 59 (1): 245-252. 10.1016/j.brainresrev.2008.08.003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cote S, Wei G, Mousseau N: All-atom stability and oligomerization simulations of polyglutamine nanotubes with and without the 17-amino-acid N-terminal fragment of the Huntingtin protein. The journal of physical chemistry B. 2012, 116 (40): 12168-12179. 10.1021/jp306661c.
Article
CAS
PubMed
Google Scholar
Kubota H, Kitamura A, Nagata K: Analyzing the aggregation of polyglutamine-expansion proteins and its modulation by molecular chaperones. Methods. 2011, 53 (3): 267-274. 10.1016/j.ymeth.2010.12.035.
Article
CAS
PubMed
Google Scholar
Perney NM, Braddick L, Jurna M, Garbacik ET, Offerhaus HL, Serpell LC, Blanch E, Holden-Dye L, Brocklesby WS, Melvin T: Polyglutamine aggregate structure in vitro and in vivo; new avenues for coherent anti-Stokes Raman scattering microscopy. PloS one. 2012, 7 (7): e40536-10.1371/journal.pone.0040536.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang Y, Voth GA: Molecular dynamics simulations of polyglutamine aggregation using solvent-free multiscale coarse-grained models. The journal of physical chemistry B. 2010, 114 (26): 8735-8743. 10.1021/jp1007768.
Article
CAS
PubMed
Google Scholar
Lakhani VV, Ding F, Dokholyan NV: Polyglutamine induced misfolding of huntingtin exon1 is modulated by the flanking sequences. PLoS computational biology. 2010, 6 (4): e1000772-10.1371/journal.pcbi.1000772.
Article
PubMed Central
PubMed
Google Scholar
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I: CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature genetics. 1994, 8 (3): 221-228. 10.1038/ng1194-221.
Article
CAS
PubMed
Google Scholar
Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N: Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature genetics. 1996, 14 (3): 285-291. 10.1038/ng1196-285.
Article
CAS
PubMed
Google Scholar
Miller J, Rutenber E, Muchowski PJ: Polyglutamine dances the conformational cha-cha-cha. Structure. 2009, London, England : 1993, 17 (9): 1151-1153. 10.1016/j.str.2009.08.004.
Kim MW, Chelliah Y, Kim SW, Otwinowski Z, Bezprozvanny I: Secondary structure of Huntingtin amino-terminal region. Structure. 2009, London, England : 1993, 17 (9): 1205-1212. 10.1016/j.str.2009.08.002.
Kim M: Beta conformation of polyglutamine track revealed by a crystal structure of Huntingtin N-terminal region with insertion of three histidine residues. Prion. 2013, 7 (3):
Esposito L, Paladino A, Pedone C, Vitagliano L: Insights into structure, stability, and toxicity of monomeric and aggregated polyglutamine models from molecular dynamics simulations. Biophysical journal. 2008, 94 (10): 4031-4040. 10.1529/biophysj.107.118935.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miettinen MS, Knecht V, Monticelli L, Ignatova Z: Assessing polyglutamine conformation in the nucleating event by molecular dynamics simulations. The journal of physical chemistry B. 2012
Google Scholar
Runthala A: Protein structure prediction: challenging targets for CASP10. Journal of biomolecular structure & dynamics. 2012, 30 (5): 607-615. 10.1080/07391102.2012.687526.
Article
CAS
Google Scholar
Moult J, Fidelis K, Kryshtafovych A, Rost B, Tramontano A: Critical assessment of methods of protein structure prediction - Round VIII. Proteins. 2009, 77 (Suppl 9): 1-4.
Article
CAS
PubMed
Google Scholar
Zhang Y: I-TASSER server for protein 3D structure prediction. BMC bioinformatics. 2008, 9: 40-10.1186/1471-2105-9-40.
Article
PubMed Central
PubMed
Google Scholar
Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. Genome research. 2004, 14 (6): 1188-1190. 10.1101/gr.849004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang Y, Skolnick J: TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic acids research. 2005, 33 (7): 2302-2309. 10.1093/nar/gki524.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang Y, Skolnick J: Scoring function for automated assessment of protein structure template quality. Proteins. 2004, 57 (4): 702-710. 10.1002/prot.20264.
Article
CAS
PubMed
Google Scholar
Slater AW, Castellanos JI, Sippl MJ, Melo F: Towards the development of standardized methods for comparison, ranking and evaluation of structure alignments. Bioinformatics (Oxford, England). 2013, 29 (1): 47-53. 10.1093/bioinformatics/bts600.
Article
CAS
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic acids research. 2000, 28 (1): 235-242. 10.1093/nar/28.1.235.
Article
PubMed Central
CAS
PubMed
Google Scholar
Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, Kim D, Kellogg E, DiMaio F, Lange O: Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins. 2009, 77 (Suppl 9): 89-99.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roy A, Kucukural A, Zhang Y: I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protocols. 2010, 5 (4): 725-738. 10.1038/nprot.2010.5.
Article
CAS
PubMed
Google Scholar
Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W: ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods in enzymology. 2011, 487: 545-574.
Article
PubMed Central
CAS
PubMed
Google Scholar
The PSIPRED protein sequence analysis workbench. [http://bioinf.cs.ucl.ac.uk/psipred/]
Jufo9D Server. [http://www.meilerlab.org/index.php/servers/show?s_id = 5]
Karplus K: SAM-T08, HMM-based protein structure prediction. Nucleic acids research. 2009, 37 (Web Server): W492-497. 10.1093/nar/gkp403.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gront D, Kulp DW, Vernon RM, Strauss CE, Baker D: Generalized fragment picking in Rosetta: design, protocols and applications. PloS one. 2011, 6 (8): e23294-10.1371/journal.pone.0023294.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kabsch W, Sander C: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983, 22 (12): 2577-2637. 10.1002/bip.360221211.
Article
CAS
PubMed
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE: UCSF Chimera--a visualization system for exploratory research and analysis. Journal of computational chemistry. 2004, 25 (13): 1605-1612. 10.1002/jcc.20084.
Article
CAS
PubMed
Google Scholar
R Development Core Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2011