Fink AL: Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 1998, 3: R9 -23. 10.1016/S1359-0278(98)00002-9
Article
CAS
PubMed
Google Scholar
Smith A: protein misfolding. Nature 2003, 426: 883 -8883. 10.1038/426883a
Article
CAS
Google Scholar
Ventura S, Villaverde A: Protein quality in bacterial inclusion bodies. Trends Biotechnol 2006, 24(4):179–185. 10.1016/j.tibtech.2006.02.007
Article
CAS
PubMed
Google Scholar
Treuheit MJ, Kosky AA, Brems DN: Inverse relationship of protein concentration and aggregation. Pharm Res 2002, 19(4):511–516. 10.1023/A:1015108115452
Article
CAS
PubMed
Google Scholar
Dobson CM: Protein-misfolding diseases: Getting out of shape. Nature 2002, 418: 729 -7730. 10.1038/418729a
Article
CAS
PubMed
Google Scholar
Cohen FE, Kelly JW: Therapeutic approaches to protein-misfolding diseases. Nature 2003, 426: 905 -9909. 10.1038/nature02265
Article
CAS
PubMed
Google Scholar
Rochet JC, Lansbury PT: Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 2000, 10: 60 -668. 10.1016/S0959-440X(99)00049-4
Article
CAS
PubMed
Google Scholar
Stefani M, Dobson CM: Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 2003, 81(11):678–699. 10.1007/s00109-003-0464-5
Article
CAS
PubMed
Google Scholar
Ivanova MI, Sawaya MR, Gingery M, Attinger A, Eisenberg D: An amyloid-forming segment of {beta}2-microglobulin suggests a molecular model for the fibril. PNAS 2004, 101(29):10584–10589. 10.1073/pnas.0403756101
Article
PubMed Central
CAS
PubMed
Google Scholar
Ventura S, Zurdo J, Narayanan S, Parreno M, Mangues R, Reif B, Chiti F, Giannoni E, Dobson CM, Aviles FX, Serrano L: Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc Natl Acad Sci U S A 2004, 101: 7258 -77263. 10.1073/pnas.0308249101
Article
PubMed Central
CAS
PubMed
Google Scholar
Chiti F, Dobson CM: Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 2006, 75: 333–366. 10.1146/annurev.biochem.75.101304.123901
Article
CAS
PubMed
Google Scholar
de Groot NS, Aviles FX, Vendrell J, Ventura S: Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer's peptide. Side-chain properties correlate with aggregation propensities. Febs J 2006, 273(3):658–668. 10.1111/j.1742-4658.2005.05102.x
Article
PubMed
Google Scholar
de Groot N, Pallares I, Aviles F, Vendrell J, Ventura S: Prediction of "hot spots" of aggregation in disease-linked polypeptides. BMC Structural Biology 2005, 5(1):18. 10.1186/1472-6807-5-18
Article
PubMed Central
Google Scholar
Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM: Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 2003, 424(6950):805–808. 10.1038/nature01891
Article
CAS
PubMed
Google Scholar
[http://www.expasy.org/tools/pscale/A.A.Swiss-Prot.html]
Williams AD, Portelius E, Kheterpal I, Guo JT, Cook KD, Xu Y, Wetzel R: Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. J Mol Biol 2004, 335(3):833–842. 10.1016/j.jmb.2003.11.008
Article
CAS
PubMed
Google Scholar
Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM: Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci U S A 1999, 96(7):3590–3594. 10.1073/pnas.96.7.3590
Article
PubMed Central
CAS
PubMed
Google Scholar
Chiti F, Calamai M, Taddei N, Stefani M, Ramponi G, Dobson CM: Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc Natl Acad Sci U S A 2002, 99 Suppl 4: 16419–16426. 10.1073/pnas.212527999
Article
PubMed
Google Scholar
Rojas Quijano FA, Morrow D, Wise BM, Brancia FL, Goux WJ: Prediction of nucleating sequences from amyloidogenic propensities of tau-related peptides. Biochemistry 2006, 45(14):4638–4652. 10.1021/bi052226q
Article
CAS
PubMed
Google Scholar
Ivanova MI, Thompson MJ, Eisenberg D: A systematic screen of beta(2)-microglobulin and insulin for amyloid-like segments. Proc Natl Acad Sci U S A 2006, 103(11):4079–4082. 10.1073/pnas.0511298103
Article
PubMed Central
CAS
PubMed
Google Scholar
Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L: Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 2004, 22: 1302 -11306. 10.1038/nbt1012
Article
CAS
PubMed
Google Scholar
DuBay KF, Pawar AP, Chiti F, Zurdo J, Dobson CM, Vendruscolo M: Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J Mol Biol 2004, 341(5):1317–1326. 10.1016/j.jmb.2004.06.043
Article
CAS
PubMed
Google Scholar
Tartaglia GG, Cavalli A, Pellarin R, Caflisch A: Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci 2005, 14(10):2723–2734. 10.1110/ps.051471205
Article
PubMed Central
CAS
PubMed
Google Scholar
Idicula-Thomas S, Balaji PV: Understanding the relationship between the primary structure of proteins and their amyloidogenic propensity: clues from inclusion body formation. Protein Eng Des Sel 2005, 18(4):175–180. 10.1093/protein/gzi022
Article
CAS
PubMed
Google Scholar
Johansson J, Weaver TE, Tjernberg LO: Proteolytic generation and aggregation of peptides from transmembrane regions: lung surfactant protein C and amyloid beta-peptide. Cell Mol Life Sci 2004, 61(3):326–335. 10.1007/s00018-003-3274-6
Article
CAS
PubMed
Google Scholar
Westermark P, Johnson KH, O'Brien TD, Betsholtz C: Islet amyloid polypeptide--a novel controversy in diabetes research. Diabetologia 1992, 35(4):297–303. 10.1007/BF00401195
Article
CAS
PubMed
Google Scholar
Margittai M, Langen R: Template-assisted filament growth by parallel stacking of tau. Proc Natl Acad Sci U S A 2004, 101(28):10278–10283. 10.1073/pnas.0401911101
Article
PubMed Central
CAS
PubMed
Google Scholar
Selkoe DJ: Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nat Cell Biol 2004, 6(11):1054–1061. 10.1038/ncb1104-1054
Article
CAS
PubMed
Google Scholar
Nelson R, Eisenberg D: Structural models of amyloid-like fibrils. Adv Protein Chem 2006, 73: 235–282.
Article
CAS
PubMed
Google Scholar
Pawar AP, Dubay KF, Zurdo J, Chiti F, Vendruscolo M, Dobson CM: Prediction of "aggregation-prone" and "aggregation-susceptible" regions in proteins associated with neurodegenerative diseases. J Mol Biol 2005, 350(2):379–392. 10.1016/j.jmb.2005.04.016
Article
CAS
PubMed
Google Scholar
Galzitskaya OV, Garbuzynskiy SO, Lobanov MY: Prediction of amyloidogenic and disordered regions in protein chains. PLoS Comput Biol 2006, 2(12):e177. 10.1371/journal.pcbi.0020177
Article
PubMed Central
PubMed
Google Scholar
Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D: The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 2006, 103(11):4074–4078. 10.1073/pnas.0511295103
Article
PubMed Central
CAS
PubMed
Google Scholar
Lopez De La Paz M, Goldie K, Zurdo J, Lacroix E, Dobson CM, Hoenger A, Serrano L: De novo designed peptide-based amyloid fibrils. Proc Natl Acad Sci U S A 2002, 99(25):16052–16057. 10.1073/pnas.252340199
Article
PubMed Central
PubMed
Google Scholar
Fowler SB, Poon S, Muff R, Chiti F, Dobson CM, Zurdo J: Rational design of aggregation-resistant bioactive peptides: reengineering human calcitonin. Proc Natl Acad Sci U S A 2005, 102(29):10105–10110. 10.1073/pnas.0501215102
Article
PubMed Central
CAS
PubMed
Google Scholar
Esler WP, Stimson ER, Ghilardi JR, Lu YA, Felix AM, Vinters HV, Mantyh PW, Lee JP, Maggio JE: Point substitution in the central hydrophobic cluster of a human beta-amyloid congener disrupts peptide folding and abolishes plaque competence. Biochemistry 1996, 35: 13914 -13921. 10.1021/bi961302+
Article
CAS
PubMed
Google Scholar
Lambermon MH, Rappaport RV, McLaurin J: Biophysical characterization of longer forms of amyloid beta peptides: possible contribution to flocculent plaque formation. J Neurochem 2005, 95(6):1667–1676. 10.1111/j.1471-4159.2005.03497.x
Article
CAS
PubMed
Google Scholar
Gamblin TC, Berry RW, Binder LI: Tau polymerization: role of the amino terminus. Biochemistry 2003, 42(7):2252–2257. 10.1021/bi0272510
Article
CAS
PubMed
Google Scholar
Barghorn S, Mandelkow E: Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry 2002, 41(50):14885–14896. 10.1021/bi026469j
Article
CAS
PubMed
Google Scholar
Li L, von Bergen M, Mandelkow EM, Mandelkow E: Structure, stability, and aggregation of paired helical filaments from tau protein and FTDP-17 mutants probed by tryptophan scanning mutagenesis. J Biol Chem 2002, 277(44):41390–41400. 10.1074/jbc.M206334200
Article
CAS
PubMed
Google Scholar
Yao TM, Tomoo K, Ishida T, Hasegawa H, Sasaki M, Taniguchi T: Aggregation analysis of the microtubule binding domain in tau protein by spectroscopic methods. J Biochem (Tokyo) 2003, 134(1):91–99.
Article
CAS
Google Scholar
Rabzelj S, Turk V, Zerovnik E: In vitro study of stability and amyloid-fibril formation of two mutants of human stefin B (cystatin B) occurring in patients with EPM1. Protein Sci 2005, 14(10):2713–2722. 10.1110/ps.051609705
Article
PubMed Central
CAS
PubMed
Google Scholar
Delibas A, Oner A, Balci B, Demircin G, Bulbul M, Bek K, Erdogan O, Baysun S, Yilmaz E: Genetic risk factors of amyloidogenesis in familial Mediterranean fever. Am J Nephrol 2005, 25(5):434–440. 10.1159/000087824
Article
CAS
PubMed
Google Scholar
Jimenez JL, Guijarro JI, Orlova E, Zurdo J, Dobson CM, Sunde M, Saibil HR: Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. Embo J 1999, 18(4):815–821. 10.1093/emboj/18.4.815
Article
PubMed Central
CAS
PubMed
Google Scholar
Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M: Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002, 416(6880):507–511. 10.1038/416507a
Article
CAS
PubMed
Google Scholar
Ventura S, Lacroix E, Serrano L: Insights into the origin of the tendency of the PI3-SH3 domain to form amyloid fibrils. J Mol Biol 2002, 322: 1147 -11458. 10.1016/S0022-2836(02)00783-0
Article
CAS
PubMed
Google Scholar
Morel B, Casares S, Conejero-Lara F: A single mutation induces amyloid aggregation in the alpha-spectrin SH3 domain: analysis of the early stages of fibril formation. J Mol Biol 2006, 356(2):453–468. 10.1016/j.jmb.2005.11.062
Article
CAS
PubMed
Google Scholar
Linding R, Schymkowitz J, Rousseau F, Diella F, Serrano L: A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins. J Mol Biol 2004, 342(1):345–353. 10.1016/j.jmb.2004.06.088
Article
CAS
PubMed
Google Scholar
Rousseau F, Schymkowitz J, Serrano L: Protein aggregation and amyloidosis: confusion of the kinds? Curr Opin Struct Biol 2006, 16(1):118–126. 10.1016/j.sbi.2006.01.011
Article
CAS
PubMed
Google Scholar
Villaverde A, Carrio MM: Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 2003, 25(17):1385–1395. 10.1023/A:1025024104862
Article
CAS
PubMed
Google Scholar
Clackson T, Wells JA: A hot spot of binding energy in a hormone-receptor interface. Science 1995, 267(5196):383–386. 10.1126/science.7529940
Article
CAS
PubMed
Google Scholar
Keskin O, Ma B, Nussinov R: Hot regions in protein--protein interactions: the organization and contribution of structurally conserved hot spot residues. J Mol Biol 2005, 345(5):1281–1294. 10.1016/j.jmb.2004.10.077
Article
CAS
PubMed
Google Scholar
El-Agnaf O, Gibson G, Lee M, Wright A, Austen BM: Properties of neurotoxic peptides related to the Bri gene. Protein Pept Lett 2004, 11(3):207–212. 10.2174/0929866043407156
Article
CAS
PubMed
Google Scholar
El-Agnaf OM, Nagala S, Patel BP, Austen BM: Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J Mol Biol 2001, 310(1):157–168. 10.1006/jmbi.2001.4743
Article
CAS
PubMed
Google Scholar
Goedert M: Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2001, 2(7):492–501. 10.1038/35081564
Article
CAS
PubMed
Google Scholar
Bodles AM, Guthrie DJ, Greer B, Irvine GB: Identification of the region of non-Abeta component (NAC) of Alzheimer's disease amyloid responsible for its aggregation and toxicity. J Neurochem 2001, 78(2):384–395. 10.1046/j.1471-4159.2001.00408.x
Article
CAS
PubMed
Google Scholar
Miake H, Mizusawa H, Iwatsubo T, Hasegawa M: Biochemical characterization of the core structure of alpha-synuclein filaments. J Biol Chem 2002, 277(21):19213–19219. 10.1074/jbc.M110551200
Article
CAS
PubMed
Google Scholar
Kallijarvi J, Haltia M, Baumann MH: Amphoterin includes a sequence motif which is homologous to the Alzheimer's beta-amyloid peptide (Abeta), forms amyloid fibrils in vitro, and binds avidly to Abeta. Biochemistry 2001, 40(34):10032–10037. 10.1021/bi002095n
Article
CAS
PubMed
Google Scholar
Morimoto A, Irie K, Murakami K, Masuda Y, Ohigashi H, Nagao M, Fukuda H, Shimizu T, Shirasawa T: Analysis of the secondary structure of beta-amyloid (Abeta42) fibrils by systematic proline replacement. J Biol Chem 2004, 279(50):52781–52788. 10.1074/jbc.M406262200
Article
CAS
PubMed
Google Scholar
Nichols WC, Dwulet FE, Liepnieks J, Benson MD: Variant apolipoprotein AI as a major constituent of a human hereditary amyloid. Biochem Biophys Res Commun 1988, 156(2):762–768. 10.1016/S0006-291X(88)80909-4
Article
CAS
PubMed
Google Scholar
Wilson LM, Mok YF, Binger KJ, Griffin MD, Mertens HD, Lin F, Wade JD, Gooley PR, Howlett GJ: A Structural Core Within Apolipoprotein C-II Amyloid Fibrils Identified Using Hydrogen Exchange and Proteolysis. J Mol Biol 2007, 366(5):1639–51. 10.1016/j.jmb.2006.12.040
Article
CAS
PubMed
Google Scholar
Hasegawa K, Ohhashi Y, Yamaguchi I, Takahashi N, Tsutsumi S, Goto Y, Gejyo F, Naiki H: Amyloidogenic synthetic peptides of beta2-microglobulin--a role of the disulfide bond. Biochem Biophys Res Commun 2003, 304(1):101–106. 10.1016/S0006-291X(03)00543-6
Article
CAS
PubMed
Google Scholar
Jones S, Manning J, Kad NM, Radford SE: Amyloid-forming peptides from beta2-microglobulin-Insights into the mechanism of fibril formation in vitro. J Mol Biol 2003, 325(2):249–257. 10.1016/S0022-2836(02)01227-5
Article
CAS
PubMed
Google Scholar
Tamburro AM, Pepe A, Bochicchio B, Quaglino D, Ronchetti IP: Supramolecular amyloid-like assembly of the polypeptide sequence coded by exon 30 of human tropoelastin. J Biol Chem 2005, 280(4):2682–2690. 10.1074/jbc.M411617200
Article
CAS
PubMed
Google Scholar
Hamidi Asl L, Liepnieks JJ, Uemichi T, Rebibou JM, Justrabo E, Droz D, Mousson C, Chalopin JM, Benson MD, Delpech M, Grateau G: Renal amyloidosis with a frame shift mutation in fibrinogen aalpha-chain gene producing a novel amyloid protein. Blood 1997, 90(12):4799–4805.
CAS
PubMed
Google Scholar
Liu W, Crocker E, Zhang W, Elliott JI, Luy B, Li H, Aimoto S, Smith SO: Structural role of glycine in amyloid fibrils formed from transmembrane alpha-helices. Biochemistry 2005, 44(9):3591–3597. 10.1021/bi047827g
Article
CAS
PubMed
Google Scholar
Jimenez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR: The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci U S A 2002, 99(14):9196–9201. 10.1073/pnas.142459399
Article
PubMed Central
CAS
PubMed
Google Scholar
Scrocchi LA, Ha K, Chen Y, Wu L, Wang F, Fraser PE: Identification of minimal peptide sequences in the (8–20) domain of human islet amyloid polypeptide involved in fibrillogenesis. J Struct Biol 2003, 141(3):218–227. 10.1016/S1047-8477(02)00630-5
Article
CAS
PubMed
Google Scholar
Azriel R, Gazit E: Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem 2001, 276(36):34156–34161. 10.1074/jbc.M102883200
Article
CAS
PubMed
Google Scholar
Krebs MR, Wilkins DK, Chung EW, Pitkeathly MC, Chamberlain AK, Zurdo J, Robinson CV, Dobson CM: Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. J Mol Biol 2000, 300(3):541–549. 10.1006/jmbi.2000.3862
Article
CAS
PubMed
Google Scholar
Frare E, Polverino De Laureto P, Zurdo J, Dobson CM, Fontana A: A highly amyloidogenic region of hen lysozyme. J Mol Biol 2004, 340(5):1153–1165. 10.1016/j.jmb.2004.05.056
Article
CAS
PubMed
Google Scholar
Reches M, Gazit E: Amyloidogenic hexapeptide fragment of medin: homology to functional islet amyloid polypeptide fragments. Amyloid 2004, 11(2):81–89.
Article
CAS
PubMed
Google Scholar
Fandrich M, Forge V, Buder K, Kittler M, Dobson CM, Diekmann S: Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments. Proc Natl Acad Sci U S A 2003, 100(26):15463–15468. 10.1073/pnas.0303758100
Article
PubMed Central
PubMed
Google Scholar
Tagliavini F, Prelli F, Verga L, Giaccone G, Sarma R, Gorevic P, Ghetti B, Passerini F, Ghibaudi E, Forloni G, et al.: Synthetic peptides homologous to prion protein residues 106–147 form amyloid-like fibrils in vitro. Proc Natl Acad Sci U S A 1993, 90(20):9678–9682. 10.1073/pnas.90.20.9678
Article
PubMed Central
CAS
PubMed
Google Scholar
Hinton DR, Polk RK, Linse KD, Weiss MH, Kovacs K, Garner JA: Characterization of spherical amyloid protein from a prolactin-producing pituitary adenoma. Acta Neuropathol (Berl) 1997, 93(1):43–49. 10.1007/s004010050581
Article
CAS
Google Scholar
Westermark GT, Engstrom U, Westermark P: The N-terminal segment of protein AA determines its fibrillogenic property. Biochem Biophys Res Commun 1992, 182(1):27–33. 10.1016/S0006-291X(05)80107-X
Article
CAS
PubMed
Google Scholar
Jarvis JA, Kirkpatrick A, Craik DJ: 1H NMR analysis of fibril-forming peptide fragments of transthyretin. Int J Pept Protein Res 1994, 44(4):388–398.
Article
CAS
PubMed
Google Scholar
Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, Griffin RG: High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 2004, 101(3):711–716. 10.1073/pnas.0304849101
Article
PubMed Central
CAS
PubMed
Google Scholar
Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R: A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 2002, 99(26):16742–16747. 10.1073/pnas.262663499
Article
PubMed Central
CAS
PubMed
Google Scholar
Kajava AV, Aebi U, Steven AC: The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin. J Mol Biol 2005, 348(2):247–252. 10.1016/j.jmb.2005.02.029
Article
CAS
PubMed
Google Scholar
Ritter C, Maddelein ML, Siemer AB, Luhrs T, Ernst M, Meier BH, Saupe SJ, Riek R: Correlation of structural elements and infectivity of the HET-s prion. Nature 2005, 435(7043):844–848. 10.1038/nature03793
Article
PubMed Central
CAS
PubMed
Google Scholar
Lim KH, Nguyen TN, Damo SM, Mazur T, Ball HL, Prusiner SB, Pines A, Wemmer DE: Solid-state NMR structural studies of the fibril form of a mutant mouse prion peptide PrP89–143(P101L). Solid State Nucl Magn Reson 2006, 29(1–3):183–190. 10.1016/j.ssnmr.2005.09.017
Article
CAS
PubMed
Google Scholar
Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y: 3D structure of amyloid protofilaments of beta2-microglobulin fragment probed by solid-state NMR. Proc Natl Acad Sci U S A 2006, 103(48):18119–18124. 10.1073/pnas.0607180103
Article
PubMed Central
CAS
PubMed
Google Scholar
Jaroniec CP, MacPhee CE, Astrof NS, Dobson CM, Griffin RG: Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci U S A 2002, 99(26):16748–16753. 10.1073/pnas.252625999
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamamoto N, Hasegawa K, Matsuzaki K, Naiki H, Yanagisawa K: Environment- and mutation-dependent aggregation behavior of Alzheimer amyloid beta-protein. J Neurochem 2004, 90(1):62–69. 10.1111/j.1471-4159.2004.02459.x
Article
CAS
PubMed
Google Scholar
Cannon MJ, Williams AD, Wetzel R, Myszka DG: Kinetic analysis of beta-amyloid fibril elongation. Anal Biochem 2004, 328(1):67–75. 10.1016/j.ab.2004.01.014
Article
CAS
PubMed
Google Scholar
Van Nostrand WE, Melchor JP, Cho HS, Greenberg SM, Rebeck GW: Pathogenic effects of D23N Iowa mutant amyloid beta -protein. J Biol Chem 2001, 276(35):32860–32866. 10.1074/jbc.M104135200
Article
CAS
PubMed
Google Scholar
Wurth C, Guimard NK, Hecht MH: Mutations that reduce aggregation of the Alzheimer's Abeta42 peptide: an unbiased search for the sequence determinants of Abeta amyloidogenesis. J Mol Biol 2002, 319(5):1279–1290. 10.1016/S0022-2836(02)00399-6
Article
CAS
PubMed
Google Scholar
Jarrett JT, Berger EP, Lansbury PT Jr.: The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 1993, 32(18):4693–4697. 10.1021/bi00069a001
Article
CAS
PubMed
Google Scholar
Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N, Miller R, Berry RW, Binder LI, Cryns VL: Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc Natl Acad Sci U S A 2003, 100(17):10032–10037. 10.1073/pnas.1630428100
Article
PubMed Central
CAS
PubMed
Google Scholar
Barghorn S, Zheng-Fischhofer Q, Ackmann M, Biernat J, von Bergen M, Mandelkow EM, Mandelkow E: Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias. Biochemistry 2000, 39(38):11714–11721. 10.1021/bi000850r
Article
CAS
PubMed
Google Scholar
Rosso SM, van Herpen E, Deelen W, Kamphorst W, Severijnen LA, Willemsen R, Ravid R, Niermeijer MF, Dooijes D, Smith MJ, Goedert M, Heutink P, van Swieten JC: A novel tau mutation, S320F, causes a tauopathy with inclusions similar to those in Pick's disease. Ann Neurol 2002, 51(3):373–376. 10.1002/ana.10140
Article
CAS
PubMed
Google Scholar
Choi W, Zibaee S, Jakes R, Serpell LC, Davletov B, Crowther RA, Goedert M: Mutation E46K increases phospholipid binding and assembly into filaments of human alpha-synuclein. FEBS Lett 2004, 576(3):363–368. 10.1016/j.febslet.2004.09.038
Article
CAS
PubMed
Google Scholar
Giasson BI, Murray IV, Trojanowski JQ, Lee VM: A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 2001, 276(4):2380–2386. 10.1074/jbc.M008919200
Article
CAS
PubMed
Google Scholar
Green J, Goldsbury C, Mini T, Sunderji S, Frey P, Kistler J, Cooper G, Aebi U: Full-length rat amylin forms fibrils following substitution of single residues from human amylin. J Mol Biol 2003, 326(4):1147–1156. 10.1016/S0022-2836(02)01377-3
Article
CAS
PubMed
Google Scholar
Sakagashira S, Sanke T, Hanabusa T, Shimomura H, Ohagi S, Kumagaye KY, Nakajima K, Nanjo K: Missense mutation of amylin gene (S20G) in Japanese NIDDM patients. Diabetes 1996, 45(9):1279–1281. 10.2337/diabetes.45.9.1279
Article
CAS
PubMed
Google Scholar
Porte D Jr., Kahn SE: Hyperproinsulinemia and amyloid in NIDDM. Clues to etiology of islet beta-cell dysfunction? Diabetes 1989, 38(11):1333–1336. 10.2337/diabetes.38.11.1333
Article
CAS
PubMed
Google Scholar
Salmona M, Malesani P, De Gioia L, Gorla S, Bruschi M, Molinari A, Della Vedova F, Pedrotti B, Marrari MA, Awan T, Bugiani O, Forloni G, Tagliavini F: Molecular determinants of the physicochemical properties of a critical prion protein region comprising residues 106–126. Biochem J 1999, 342 ( Pt 1): 207–214. 10.1042/0264-6021:3420207
CAS
Google Scholar
Thompson AJ, Barnham KJ, Norton RS, Barrow CJ: The Val-210-Ile pathogenic Creutzfeldt-Jakob disease mutation increases both the helical and aggregation propensities of a sequence corresponding to helix-3 of PrP(C). Biochim Biophys Acta 2001, 1544(1–2):242–254.
Article
CAS
PubMed
Google Scholar