Garud SS, Keilin S, Cai Q, Willingham FF. Diagnosis and management of Barrett’s esophagus for the endoscopist. Ther Adv Gastroenterol. 2010;3(4):227–38.
Google Scholar
Key Statistics for Esophageal Cancer [https://www.cancer.org/cancer/esophagus-cancer/about/key-statistics.html#references], (8, 2018).
Zhang J, Bowers J, Liu L, Wei S, Gowda GN, Hammoud Z, Raftery D. Esophageal cancer metabolite biomarkers detected by LC-MS and NMR methods. PLoS One. 2012;7(1):e30181.
CAS
PubMed
PubMed Central
Google Scholar
Sharma N, Ho KY. Risk factors for Barrett's oesophagus. Gastrointestinal tumors. 2016;3(2):103–8.
PubMed
PubMed Central
Google Scholar
Orloff M, Peterson C, He X, Ganapathi S, Heald B, Yang Y-r, Bebek G, Romigh T, Song JH, Wu W. Germline mutations in MSR1, ASCC1, and CTHRC1 in patients with Barrett esophagus and esophageal adenocarcinoma. JAmA. 2011;306(4):410–9.
CAS
PubMed
PubMed Central
Google Scholar
Zheng H, Wang Y, Tang C, Jones L, Ye H, Zhang G, Cao W, Li J, Liu L, Liu Z. TP53, PIK3CA, FBXW7 and KRAS mutations in esophageal cancer identified by targeted sequencing. Cancer Genomics-Proteomics. 2016;13(3):231–8.
CAS
PubMed
Google Scholar
Chak A, Ochs-Balcom H, Falk G, Grady WM, Kinnard M, Willis JE, Elston R, Eng C. Familiality in Barrett's esophagus, adenocarcinoma of the esophagus, and adenocarcinoma of the gastroesophageal junction. Cancer Epidemiology and Prevention. Biomarkers. 2006;15(9):1668–73.
Google Scholar
Gharahkhani P, Fitzgerald RC, Vaughan TL, Palles C, Gockel I, Tomlinson I, Buas MF, May A, Gerges C, Anders M. Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: a large-scale meta-analysis. The Lancet Oncology. 2016;17(10):1363–73.
PubMed
PubMed Central
Google Scholar
Dumbovic G, Forcales S-V, Perucho M. Emerging roles of macrosatellite repeats in genome organization and disease development. Epigenetics. 2017;12(7):515–26.
PubMed
PubMed Central
Google Scholar
RepeatMasker Open-4.0 [http://www.repeatmasker.org], (4, 2018).
Gandin I, Faletra F, Faletra F, Carella M, Pecile V, Ferrero GB, Biamino E, Palumbo P, Palumbo O, Bosco P. Excess of runs of homozygosity is associated with severe cognitive impairment in intellectual disability. Genetics in Medicine. 2014;17(5):396.
PubMed
Google Scholar
Gibson J, Morton NE, Collins A. Extended tracts of homozygosity in outbred human populations. Hum Mol Genet. 2006;15(5):789–95.
CAS
PubMed
Google Scholar
Kirin M, McQuillan R, Franklin CS, Campbell H, McKeigue PM, Wilson JF. Genomic runs of homozygosity record population history and consanguinity. PLoS One. 2010;5(11):e13996.
PubMed
PubMed Central
Google Scholar
Mezzavilla M, Vozzi D, Badii R, Alkowari MK, Abdulhadi K, Girotto G, Gasparini P. Increased rate of deleterious variants in long runs of homozygosity of an inbred population from Qatar. Hum Hered. 2015;79(1):14–9.
PubMed
Google Scholar
Pippucci T, Magi A, Gialluisi A, Romeo G. Detection of runs of homozygosity from whole exome sequencing data: state of the art and perspectives for clinical, population and epidemiological studies. Hum Hered. 2014;77(1–4):63–72.
PubMed
Google Scholar
Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7(2):85.
CAS
PubMed
Google Scholar
Speed D, Cai N, Johnson MR, Nejentsev S, Balding DJ, Consortium U. Reevaluation of SNP heritability in complex human traits. Nat Genet. 2017;49(7):986.
CAS
PubMed
PubMed Central
Google Scholar
Hannan AJ. Tandem repeats mediating genetic plasticity in health and disease. Nat Rev Genet. 2018;19(5):286.
CAS
PubMed
Google Scholar
Bacolod MD, Schemmann GS, Wang S, Shattock R, Giardina SF, Zeng Z, Shia J, Stengel RF, Gerry N, Hoh J. The signatures of autozygosity among patients with colorectal cancer. Cancer Res. 2008;68(8):2610–21.
CAS
PubMed
PubMed Central
Google Scholar
Lencz T, Lambert C, DeRosse P, Burdick KE, Morgan TV, Kane JM, Kucherlapati R, Malhotra AK. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci. 2007;104(50):19942–7.
CAS
PubMed
PubMed Central
Google Scholar
Lu S, Wang G, Bacolla A, Zhao J, Spitser S, Vasquez KM. Short inverted repeats are hotspots for genetic instability: relevance to cancer genomes. Cell Rep. 2015;10(10):1674–80.
CAS
PubMed
PubMed Central
Google Scholar
Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2012;13(1):36.
CAS
Google Scholar
Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, Contino G, Deshpande V, Iafrate AJ, Letovsky S. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science. 2011;331(6017):593–6.
CAS
PubMed
PubMed Central
Google Scholar
Lavi B, Levy Karin E, Pupko T, Hazkani-Covo E. The prevalence and evolutionary conservation of inverted repeats in proteobacteria. Genome biology and evolution. 2018;10(3):918–27.
CAS
PubMed
PubMed Central
Google Scholar
Achaz G, Coissac E, Netter P, Rocha EP. Associations between inverted repeats and the structural evolution of bacterial genomes. Genetics. 2003;164(4):1279–89.
CAS
PubMed
PubMed Central
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenetic and genome research. 2005;110(1–4):462–7.
CAS
PubMed
Google Scholar
Ross JP, Rand KN, Molloy PL. Hypomethylation of repeated DNA sequences in cancer. Epigenomics. 2010;2(2):245–69.
CAS
PubMed
Google Scholar
Wooster R, Cleton-Jansen A-M, Collins N, Mangion J, Cornelis R, Cooper C, Gusterson B, Ponder B, Von Deimling A, Wiestler O. Instability of short tandem repeats (microsatellites) in human cancers. Nat Genet. 1994;6(2):152.
CAS
PubMed
Google Scholar
Achaz G, Coissac E, Viari A, Netter P. Analysis of intrachromosomal duplications in yeast Saccharomyces cerevisiae: a possible model for their origin. Mol Biol Evol. 2000;17(8):1268–75.
CAS
PubMed
Google Scholar
Blum A, Venkitachalam S, Guo Y, Kieber-Emmons AM, Ravi L, Chandar AK, Iyer PG, Canto MI, Wang JS, Shaheen NJ. RNA sequencing identifies transcriptionally-viable gene fusions in esophageal adenocarcinomas. Cancer research 2016:canres. 2016:0979.
Singh A, Chak A. Advances in the management of Barrett’s esophagus and early esophageal adenocarcinoma. Gastroenterology report. 2015;3(4):303–15.
PubMed
PubMed Central
Google Scholar
Sun X, Chandar AK, Canto MI, Thota PN, Brock M, Shaheen NJ, Beer DG, Wang JS, Falk GW, Iyer PG. Genomic regions associated with susceptibility to Barrett’s esophagus and esophageal adenocarcinoma in African Americans: the cross BETRNet admixture study. PLoS One. 2017;12(10):e0184962.
PubMed
PubMed Central
Google Scholar
Sun X, Chandar AK, Elston R, Chak A. What we know and what we need to know about familial gastroesophageal reflux disease and Barrett's esophagus. Clin Gastroenterol Hepatol. 2014;12(10):1664–6.
PubMed
Google Scholar
Dulak AM, Stojanov P, Peng S, Lawrence MS, Fox C, Stewart C, Bandla S, Imamura Y, Schumacher SE, Shefler E. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45(5):478.
CAS
PubMed
PubMed Central
Google Scholar
Orloff MS, Zhang L, Bebek G, Eng C. Integrative genomic analysis reveals extended germline homozygosity with lung cancer risk in the PLCO cohort. PLoS One. 2012;7(2):e31975.
CAS
PubMed
PubMed Central
Google Scholar
Perdomo C, Campbell JD, Gerrein J, Tellez CS, Garrison CB, Walser TC, Drizik E, Si H, Gower AC, Vick J. MicroRNA 4423 is a primate-specific regulator of airway epithelial cell differentiation and lung carcinogenesis. Proc Natl Acad Sci. 2013;110(47):18946–51.
CAS
PubMed
PubMed Central
Google Scholar
Ling ZQ, Mukaisho KI, Yamamoto H, Chen KH, Asano S, Araki Y, Sugihara H, Mao WM, Hattori T. Initiation of malignancy by duodenal contents reflux and the role of ezrin in developing esophageal squamous cell carcinoma. Cancer Sci. 2010;101(3):624–30.
CAS
PubMed
Google Scholar
Jian SL, Hsieh HY, Liao CT, Yen TC, Nien SW, Cheng AJ, Juang JL. Galpha(1, 2) drives invasion of oral squamous cell carcinoma through up-regulation of proinflammatory cytokines. PLoS One. 2013;8(6):e66133.
CAS
PubMed
PubMed Central
Google Scholar
Kelly P, Moeller BJ, Juneja J, Booden MA, Der CJ, Daaka Y, Dewhirst MW, Fields TA, Casey PJ. The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proc Natl Acad Sci U S A. 2006;103(21):8173–8.
CAS
PubMed
PubMed Central
Google Scholar
Kelly P, Stemmle LN, Madden JF, Fields TA, Daaka Y, Casey PJ. A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion. J Biol Chem. 2006;281(36):26483–90.
CAS
PubMed
Google Scholar
Yuan B, Cui J, Wang W, Deng K. Galpha12/13 signaling promotes cervical cancer invasion through the RhoA/ROCK-JNK signaling axis. Biochem Biophys Res Commun. 2016;473(4):1240–6.
CAS
PubMed
Google Scholar
Li Y, Chen L, Nie CJ, Zeng TT, Liu H, Mao X, Qin Y, Zhu YH, Fu L, Guan XY. Downregulation of RBMS3 is associated with poor prognosis in esophageal squamous cell carcinoma. Cancer research 2011:canres. 2010:4291.
Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21(35):5400.
CAS
PubMed
Google Scholar
Ehrlich M, Woods CB, Yu MC, Dubeau L, Yang F, Campan M, Weisenberger DJ, Long T, Youn B, Fiala ES. Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene. 2006;25(18):2636.
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann MJ, Schulz WA. Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol. 2005;83(3):296–321.
CAS
PubMed
Google Scholar
Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E, Ehrlich M, Laird PW. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res. 2005;33(21):6823–36.
CAS
PubMed
PubMed Central
Google Scholar
Narayan A, Ji W, Zhang XY, Marrogi A, Graff JR, Baylin SB, Ehrlich M. Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int J Cancer. 1998;77(6):833–8.
CAS
PubMed
Google Scholar
G-z Q, Dubeau L, Narayan A, Mimi CY, Ehrlich M. Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1999;423(1):91–101.
Google Scholar
G-z Q, Grundy PE, Narayan A, Ehrlich M. Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet Cytogenet. 1999;109(1):34–9.
Google Scholar
Florl A, Steinhoff C, Müller M, Seifert H, Hader C, Engers R, Ackermann R, Schulz W. Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br J Cancer. 2004;91(5):985.
CAS
PubMed
PubMed Central
Google Scholar
Kim M-J, White-Cross JA, Shen L, JPJ I, Rashid A. Hypomethylation of long interspersed nuclear element-1 in hepatocellular carcinomas. Mod Pathol. 2009;22(3):442.
CAS
PubMed
Google Scholar
Rodriguez J, Vives L, Jorda M, Morales C, Munoz M, Vendrell E, Peinado MA. Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Res. 2007;36(3):770–84.
PubMed
PubMed Central
Google Scholar
Chen X-X, Zhong Q, Liu Y, Yan S-M, Chen Z-H, Jin S-Z, Xia T-L, Li R-Y, Zhou A-J, Su Z. Genomic comparison of esophageal squamous cell carcinoma and its precursor lesions by multi-region whole-exome sequencing. Nat Commun. 2017;8(1):524.
CAS
PubMed
PubMed Central
Google Scholar
Reya T. Regulation of hematopoietic stem cell self-renewal. Recent Prog Horm Res. 2003;58:283–96.
CAS
PubMed
Google Scholar
Shahi P, Seethammagari MR, Valdez JM, Xin L, Spencer DM. Wnt and Notch pathways have interrelated opposing roles on prostate progenitor cell proliferation and differentiation. Stem Cells. 2011;29(4):678–88.
CAS
PubMed
PubMed Central
Google Scholar
Tamagawa Y, Ishimura N, Uno G, Yuki T, Kazumori H, Ishihara S, Amano Y, Kinoshita Y. Notch signaling pathway and Cdx2 expression in the development of Barrett's esophagus. Lab Investig. 2012;92(6):896.
CAS
PubMed
Google Scholar
Harada H, Nakagawa H, Oyama K, Takaoka M, Andl CD, Jacobmeier B, von Werder A, Enders GH, Opitz OG, Rustgi AK. Telomerase induces immortalization of human esophageal keratinocytes without p16INK4a Inactivation1 1 NIH grants R01-DK5337 (AKR), P01-DE12467 (AKR), P01-CA098101 (AKR), Deutsche Krebshilfe 10-1656-Op 1 and D/96/17197 (OGO), NIH R21 DK64249-01 (HN), AGA/FDHN Fiterman award and American Cancer Society (GHE), and NIH/NIDDK Center for molecular studies in digestive and liver diseases (P30 DK50306). Mol Cancer Res. 2003;1(10):729–38.
CAS
PubMed
Google Scholar
Vega ME, Giroux V, Natsuizaka M, Liu M, Klein-Szanto AJ, Stairs DB, Nakagawa H, Wang KK, Wang TC, Lynch JP. Inhibition of Notch signaling enhances transdifferentiation of the esophageal squamous epithelium towards a Barrett's-like metaplasia via KLF4. Cell Cycle. 2014;13(24):3857–66.
CAS
PubMed
Google Scholar
Moghbeli M, Abbaszadegan MR, Golmakani E, Forghanifard MM. Correlation of Wnt and NOTCH pathways in esophageal squamous cell carcinoma. Journal of cell communication and signaling. 2016;10(2):129–35.
PubMed
PubMed Central
Google Scholar
Robles AI, Harris CC. A primate-specific microRNA enters the lung cancer landscape. Proc Natl Acad Sci. 2013;110(47):18748–9.
CAS
PubMed
PubMed Central
Google Scholar
Knowler WC, Williams R, Pettitt D, Steinberg AG. Gm3; 5, 13, 14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture. Am J Hum Genet. 1988;43(4):520.
CAS
PubMed
PubMed Central
Google Scholar
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904.
CAS
PubMed
Google Scholar
Reich D, Price AL, Patterson N. Principal component analysis of genetic data. Nat Genet. 2008;40(5):491.
CAS
PubMed
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
CAS
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60.
CAS
PubMed
PubMed Central
Google Scholar
Warburton PE, Giordano J, Cheung F, Gelfand Y, Benson G. Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res. 2004;14(10a):1861–9.
CAS
PubMed
PubMed Central
Google Scholar
Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–92.
CAS
PubMed
Google Scholar
Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 2008;9(Suppl 1):S4.
PubMed
PubMed Central
Google Scholar