Krause PR, Bialek SR, Boppana SB, Griffiths PD, Laughlin CA, Ljungman P, Mocarski ES, Pass RF, Read JS, Schleiss MR, et al. Priorities for CMV vaccine development. Vaccine. 2013;32(1):4–10.
Article
Google Scholar
Kenneson A, Cannon MJ. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol. 2007;17(4):253–76.
Article
Google Scholar
Wathen MW, Stinski MF. Temporal patterns of human cytomegalovirus transcription: mappings the viral RNAs synthesized at immediate early, early, and late times after infection. J Virol. 1982;41:462–77.
Article
CAS
Google Scholar
Davidson AJ, Dolan A, Akter P, Addison C, Dargan DJ, Alcendor DJ, McGeoch DJ, Hayward GS. The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol. 2003;84:17–28.
Article
Google Scholar
Taylor-wiedeman J, Sissons JG, Borysiewicz LK, Sinclair JH. Monocytes are a major site of persistence of human cytoegalovirus in peripheral blood mononuclear cells. J Gen Virol. 1991;72(9):2059–64.
Article
CAS
Google Scholar
Chang G, Nogalski MT, Yurochko AD. Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility. Proc Natl Acad Sci U S A. 2009;106:22369–74.
Article
Google Scholar
Juckem LK, Boehme KW, Feire AL, Compton T. Differential initiation of innate immune responses induced by human cytomegalovirus entry into fibroblast cells. J Immunol. 2008;180:4965–77.
Article
CAS
Google Scholar
Bunde T, Kirchner A, Hoffmeister B, Habedank D, Hetzer R, Cherepnev G, Proesch S, Reinke P, Volk HD, Lehmkuhl H, et al. Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J Exp Med. 2005;201(7):1031–6. https://doi.org/10.1084/jem.20042384 Epub 20042005 Mar 20042328.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crough T, Fazou C, Weiss J, Campbell S, Davenport MP, Bell SC, Galbraith A, McNeil K, Khanna R. Symptomatic and asymptomatic viral recrudescence in solid-organ transplant recipients and its relationship with the antigen-specific CD8(+) T-cell response. J Virol. 2007;81(20):11538–42.
Article
CAS
Google Scholar
Hegde NR, Dunn C, Lewinsohn DM, Jarvis MA, Nelson JA, Johnson DC. Endogenous human cytomegalovirus gB is presented efficiently by MHC class II molecules to CD4+ CTL. J Exp Med. 2005;202(8):1109–19. https://doi.org/10.1084/jem.20050162 Epub 20052005 Oct 20050110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casazza JP, Betts MR, Price DA, Precopio ML, Ruff LE, Brenchley JM, Hill BJ, Roederer M, Douek DC, Koup RA. Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J Exp Med. 2006;203(13):2865–77.
Article
CAS
Google Scholar
Gamadia LE, Remmerswaal EB, Weel JF, Bemelman F, van Lier RA, Ten Berge IJ. Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood. 2003;101(7):2686–92.
Article
CAS
Google Scholar
Abbas AK, Lichtman AH, Shiv P. Cellular and molecular immunology, 8 edn: Elsevier; 2015.
Google Scholar
Khan N, Hislop A, Gudgeon N, Cobbold M, Khann R, Nayak L, Rickinson AB. Herpesvirus-specific CD8 T cell immunity in old age cytomegalovirs impairs the response to a coresident EBV infection. J Immunol. 2004;173:7481–9.
Article
CAS
Google Scholar
Pourgheysari B, Khan N, Best D, Bruton R, Nayak L, Moss PA. The cytomegalovirus-specific CD4+ T-cell response expands with age and markedly alters the CD4+ T-cell repertoire. J Virol. 2007;81(14):7759–65.
Article
CAS
Google Scholar
Schleiss MR. Cytomegalovirus vaccines under clinical development. J Virus Erad. 2016;2(4):198–207.
PubMed
PubMed Central
Google Scholar
Gomez-Perosanz M, Russo G, Sanchez-Trincado J, Pennisi M, Reche P, Shepherd A, Pappalardo F. Computational immunogenetics. In: Encyclopedia of bioinformatics and computational biology, vol. 2. Amsterdam: Elsevier; 2018. p. 906–30.
Chapter
Google Scholar
Vivona S, Gardy JL, Ramachandran S, Brinkman FS, Raghava GP, Flower DR, Filippini F. Computer-aided biotechnology: from immuno-informatics to reverse vaccinology. Trends Biotechnol. 2008;26(4):190–200. https://doi.org/10.1016/j.tibtech.2007.12.1006 Epub 2008 Feb 1021.
Article
CAS
PubMed
Google Scholar
Sette A, Rappuoli R. Reverse vaccinology: developing vaccines in the era of genomics. Immunity. 2010;33(4):530–41. https://doi.org/10.1016/j.immuni.2010.09.1017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sette A, Fikes J. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol. 2003;15(4):461–70.
Article
CAS
Google Scholar
Toussaint NC, Kohlbacher O. Towards in silico design of epitope-based vaccines. Expert Opin Drug Discov. 2009;4(10):1047–60. https://doi.org/10.1517/17460440903242283 Epub 17460440903242009 Aug 17460440903242228.
Article
CAS
PubMed
Google Scholar
Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA. Fundamentals and methods for T- and B-cell epitope prediction. J Immunol Res. 2017;2017:2680160.
Article
Google Scholar
Dhanda SK, Usmani SS, Agrawal P, Nagpal G, Gautam A, Raghava GPS. Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics. Brief Bioinform. 2017;18(3):467–78. https://doi.org/10.1093/bib/bbw1025.
Article
CAS
PubMed
Google Scholar
Lehmann PV, Suwansaard M, Zhang T, Roen DR, Kirchenbaum GA, Karulin AY, Lehmann A, Reche PA. Comprehensive Evaluation of the Expressed CD8+ T Cell Epitope Space Using High-Throughput Epitope Mapping. Front Immunol. 2019;10:655. https://doi.org/10.3389/fimmu.2019.00655 eCollection 02019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alonso-Padilla J, Lafuente EM, Reche PA. Computer-aided design of an epitope-based vaccine against epstein-barr virus. J Immunol Res. 2017;2017:9363750.
Article
Google Scholar
Damfo SA, Reche P, Gatherer D, Flower DR. In silico design of knowledge-based Plasmodium falciparum epitope ensemble vaccines. J Mol Graph Model. 2017;78:195–205.
Article
CAS
Google Scholar
Molero-Abraham M, Lafuente EM, Flower DR, Reche PA. Selection of conserved epitopes from hepatitis C virus for pan-population stimulation of T-cell responses. Clin Dev Immunol. 2013;2013:601943.
Article
Google Scholar
Murphy D, Reche P, Flower DR. Selection-based design of in silico dengue epitope ensemble vaccines. Chem Biol Drug Des. 2019;93(1):21–8. https://doi.org/10.1111/cbdd.13357 Epub 12018 Nov 13325.
Article
CAS
PubMed
Google Scholar
Reche PA, Keskin DB, Hussey RE, Ancuta P, Gabuzda D, Reinherz EL. Elicitation from virus-naive individuals of cytotoxic T lymphocytes directed against conserved HIV-1 epitopes. Med Immunol. 2006;5:1.
Article
Google Scholar
Shah P, Mistry J, Reche PA, Gatherer D, Flower DR. In silico design of Mycobacterium tuberculosis epitope ensemble vaccines. Mol Immunol. 2018;97:56–62.
Article
CAS
Google Scholar
Sheikh QM, Gatherer D, Reche PA, Flower DR. Towards the knowledge-based design of universal influenza epitope ensemble vaccines. Bioinformatics. 2016;32(21):3233–9. https://doi.org/10.1093/bioinformatics/btw3399 Epub 2016 Jul 3210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pass RF, Zhang C, Evans A, Simpson T, Andrews W, Huang ML, Corey L, Hill J, Davis E, Flanigan C, et al. Vaccine prevention of maternal cytomegalovirus infection. N Engl J Med. 2009;360(12):1191–9. https://doi.org/10.1056/NEJMoa0804749.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sabbaj S, Pass RF, Goepfert PA, Pichon S. Glycoprotein B vaccine is capable of boosting both antibody and CD4 T-cell responses to cytomegalovirus in chronically infected women. J Infect Dis. 2011;203(11):1534–41. https://doi.org/10.1093/infdis/jir1138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong J, Rist M, Cooper L, Smith C, Khanna R. Induction of pluripotent protective immunity following immunisation with a chimeric vaccine against human cytomegalovirus. PLoS One. 2008;3(9):e3256.
Article
Google Scholar
Angeletti D, Yewdell JW. Is It Possible to Develop a “Universal” Influenza Virus Vaccine? Outflanking Antibody Immunodominance on the Road to Universal Influenza Vaccination. Cold Spring Harb Perspect Biol. 2018;10(7). https://doi.org/10.1101/cshperspect.a028852 cshperspect.a028852.
Article
Google Scholar
Zhong W, Reche PA, Lai CC, Reinhold B, Reinherz EL. Genome-wide characterization of a viral cytotoxic T lymphocyte epitope repertoire. J Biol Chem. 2003;278(46):45135–44.
Article
CAS
Google Scholar
Molero-Abraham M, Lafuente EM, Reche P. Customized predictions of peptide-MHC binding and T-cell epitopes using EPIMHC. Methods Mol Biol. 2014;1184:319–32. https://doi.org/10.1007/978-1-4939-1115-8_18.
Article
CAS
PubMed
Google Scholar
Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A, et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2015;43(Database issue):D405–12. https://doi.org/10.1093/nar/gku1938 Epub 2014 Oct 1099.
Article
CAS
PubMed
Google Scholar
Molero-Abraham M, Glutting JP, Flower DR, Lafuente EM, Reche PA. EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses. J Immunol Res. 2015;2015:738020. https://doi.org/10.1155/2015/738020 Epub 732015 Oct 738028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toseland CP, Clayton DJ, McSparron H, Hemsley SL, Blythe MJ, Paine K, Doytchinova IA, Guan P, Hattotuwagama CK, Flower DR. AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res. 2005;1(1):4. https://doi.org/10.1186/1745-7580-1181-1184.
Article
PubMed
PubMed Central
Google Scholar
Browne EP, Shenk T. Human cytomegalovirus UL83-coded pp65 virion protein inhibits antiviral gene expression in infected cells. Proc Natl Acad Sci U S A. 2003;100(20):11439–44.
Article
CAS
Google Scholar
Hensel G, Meyer H, Gartner S, Brand G, Kern HF. Nuclear localization of the human cytomegalovirus tegument protein pp150 (ppUL32). J Gen Virol. 1995;76(Pt 7):1591–601. https://doi.org/10.1099/0022-1317-76-7-1591.
Article
CAS
PubMed
Google Scholar
Ciferri C, Chandramouli S, Donnarumma D, Nikitin PA, Cianfrocco MA, Gerrein R, Feire AL, Barnett SW. Structural and biochemical studies of HCMV gH/gL/gO and pentamer reveal mutually exclusive cell entry complexes. Proc Natl Acad Sci U S A. 2014;6:1767–72.
Google Scholar
Fridkis-Hareli M, Reche PA, Reinherz EL. Peptide variants of viral CTL epitopes mediate positive selection and emigration of Ag-specific thymocytes in vivo. J Immunol. 2004;173(2):1140–50. https://doi.org/10.4049/jimmunol.173.2.1140.
Article
CAS
PubMed
Google Scholar
Alving CR, Koulchin V, Glenn GM, Rao M. Liposomes as carriers of peptide antigens: induction of antibodies and cytotoxic T lymphocytes to conjugated and unconjugated peptides. Immunol Rev. 1995;145:5–31.
Article
CAS
Google Scholar
Fleri W, Paul S, Dhanda SK, Mahajan S, Xu X, Peters B, Sette A. The immune epitope database and analysis resource in epitope discovery and synthetuc vaccine design. Front Immunol. 2017;8:278.
Article
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–9.
Article
CAS
Google Scholar
Federhen S. Type material in the NCBI taxonomy database. Nucleic Acids Res. 2015;43(Database issue):D1086–98.
Article
CAS
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
CAS
Google Scholar
Garcia-Boronat M, Diez-Rivero CM, Reinherz EL, Reche PA. PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res. 2008;36(Web Server issue):W35–41. https://doi.org/10.1093/nar/gkn1211 Epub 2008 Apr 1027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reche PA, Glutting JP, Reinherz EL. Prediction of MHC class I binding peptides using profile motifs. Hum Immunol. 2002;63(9):701–9.
Article
CAS
Google Scholar
Reche PA, Reinherz EL. Prediction of peptide-MHC binding using profiles. Methods Mol Biol. 2007;409:185–200.
Article
CAS
Google Scholar
Lafuente EM, Reche PA. Prediction of MHC-peptide binding: a systematic and comprehensive overview. Curr Pharm Des. 2009;15(28):3209–20.
Article
CAS
Google Scholar
Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics. 2011;63(6):325–35. https://doi.org/10.1007/s00251-011-0513-0 Epub 02011 Feb 00259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S, Buus S, Lund O. Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol. 2008;4(7):e1000107. https://doi.org/10.1371/journal.pcbi.1000107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics. 2006;7:153.
Article
Google Scholar
Hubbard SJ, Thornton JM. NACCESS, Computer Program. London: Department of Biochemistry and Molecular Biology, University College London; 1993.
Klausen MS, Jespersen MC, Nielsen H, Jensen KK, Jurtz VI, Sonderby CK, Sommer MOA, Winther O, Nielsen M, Petersen B, et al. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins. 2019;20(10):25674.
Google Scholar
Schlessinger A, Yachdav G, Rost B. PROFbval: predict flexible and rigid residues in proteins. Bioinformatics. 2006;22(7):891–3. https://doi.org/10.1093/bioinformatics/btl032 Epub 2006 Feb 1092.
Article
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
CAS
Google Scholar