Shen X, Collier J, Dill D, Shapiro L, Horowitz M, McAdams HH. Architecture and inherent robustness of a bacterial cell-cycle control system. Proc Natl Acad Sci U S A. 2008; 105(32):11340–5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2516238/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sánchez-Osorio I, Hernández-Martínez CA, Martínez-Antonio A. Modeling asymmetric cell division in Caulobacter crescentus using a boolean logic approach In: Tassan JPandKubiak JZ, editor. Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation, vol. 61. Cham: Springer International Publishing: 2017. p. 1–21. https://doi.org/10.1007/978-3-319-53150-2_1.
Google Scholar
Jenal U. The role of proteolysis in the Caulobacter crescentus cell cycle and development. Res Microbiol. 2009; 160(9):687–95. https://www.sciencedirect.com/science/article/pii/S0923250809001491.
Article
CAS
PubMed
Google Scholar
Laub MT, Chen SL, Shapiro L, McAdams HH. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci U S A. 2002; 99(7):4632–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC123699/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryan KR, Judd EM, Shapiro L. The CtrA response regulator essential for Caulobacter crescentus cell-cycle progression requires a bipartite degradation signal for temporally controlled proteolysis. J Mol Biol. 2002; 324(3):443–55. https://doi.org/10.1016/S0022-2836(02)01042-2.
Article
CAS
PubMed
Google Scholar
Smith SC, Joshi KK, Zik JJ, Trinh K, Kamajaya A, Chien P, Ryan KR. Cell cycle-dependent adaptor complex for ClpXP-mediated proteolysis directly integrates phosphorylation and second messenger signals. Proc Natl Acad Sci U S A. 2014; 111(39):14229–34. https://www.pnas.org/content/111/39/14229.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lori C, Ozaki S, Steiner S, Boehm R, Abel S, Dubey BN, Schirmer T, Hiller S, Jenal U. Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. Nature. 2015; 523(7559):236–9. https://www.nature.com/articles/nature14473.
Article
CAS
PubMed
Google Scholar
Joshi KK, Bergé M, Radhakrishnan SK, Viollier PH, Chien P. An adaptor hierarchy regulates proteolysis during a bacterial cell cycle. Cell. 2015; 163(2):419–31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600535/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen YE, Tsokos CG, Biondi EG, Perchuk BS, Laub MT. Dynamics of two phosphorelays controlling cell cycle progression in Caulobacter crescentus. J Bacteriol. 2009; 191(24):7417–29. https://jb.asm.org/content/191/24/7417.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hallez R, Delaby M, Sanselicio S, Viollier PH. Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nat Rev Microbiol. 2017; 15(3):137–48. https://www.nature.com/articles/nrmicro.2016.183.
Article
CAS
PubMed
Google Scholar
Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev. 2013; 42(1):305–41. https://pubs.rsc.org/en/content/articlelanding/2013/CS/C2CS35206K#!divAbstract.
Article
CAS
PubMed
Google Scholar
Jenal U, Malone J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet. 2006; 40:385–407. https://www.annualreviews.org/doi/pdf/10.1146/annurev.genet.40.110405.090423.
Article
CAS
PubMed
Google Scholar
Schirmer T, Jenal U. Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol. 2009; 7(10):724–35. https://www.nature.com/articles/nrmicro2203.
Article
CAS
PubMed
Google Scholar
Christen M, Christen B, Folcher M, Schauerte A, Jenal U. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem. 2005; 280(35):30829–37. https://www.jbc.org/content/280/35/30829.long.
Article
CAS
PubMed
Google Scholar
Corrigan RM, Bellows LE, Wood A, Gründling A. ppgpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in gram-positive bacteria. Proc Natl Acad Sci U S A. 2016; 113(12):1710–9. https://doi.org/10.1073/pnas.1522179113.
Article
CAS
Google Scholar
Jagath J, Rodnina M, Wintermeyer W. Conformational changes in the bacterial SRP receptor FtsY upon binding of guanine nucleotides and SRP. J Mol Biol. 2000; 295(4):745–53. https://doi.org/10.1006/jmbi.1999.3427.
Article
CAS
PubMed
Google Scholar
Ratnayake-Lecamwasam M, Serror P, Wong K, Sonenshein A. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev. 2001; 15:1093–103. https://doi.org/10.1101/gad.874201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronneau S, Petit K, De Bolle X, Hallez R. Phosphotransferase-dependent accumulation of (p)ppGpp in response to glutamine deprivation in Caulobacter crescentus. Nat Commun. 2016; 7:11423. https://www.nature.com/articles/ncomms11423.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol. 2015; 13(5):298–309. https://www.nature.com/articles/nrmicro3448.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boutte C, Crosson S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol Microbiol. 2011; 80(3):695–714. https://doi.org/10.1111/j.1365-2958.2011.07602.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK, Zou WY, Rendon S, Chen R, Tu BP, Wang JD. Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell. 2012; 48(2):231–41. https://doi.org/10.1016/j.molcel.2012.08.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson BW, Liu K, Wolak C, Dubiel K, She F, Satyshur KA, Keck JL, Wang JD. Evolution of (p)ppGpp-HPRT regulation through diversification of an allosteric oligomeric interaction. eLife. 2019; 8:47534. https://doi.org/10.7554/eLife.47534.
Article
Google Scholar
Pflüger-Grau K, Chavarría M, de Lorenzo V. The interplay of the EIIA Ntr component of the nitrogen-related phosphotransferase system (PTSNtr) of Pseudomonas putida with pyruvate dehydrogenase. Biochim Biophys Acta-General Subj. 2011; 1810(10):995–1005. https://www.sciencedirect.com/science/article/abs/pii/S0304416511000055?via%3Dihub.
Article
CAS
Google Scholar
Hogg T, Mechold U, Malke H, Cashel M, Hilgenfeld R. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response. Cell. 2004; 117(3):415. https://pubmed.ncbi.nlm.nih.gov/15066282/.
Article
CAS
Google Scholar
Santillán M. On the Use of the Hill Functions in Mathematical Models of Gene Regulatory Networks. Math Model Nat Phenom. 2008; 3(2):85–97. https://www.mmnp-journal.org/articles/mmnp/abs/2008/02/mmnp2008204/mmnp2008204.html.
Article
Google Scholar
Karelina TA, Ma H, Goryanin I, Demin OV. EI of the phosphotransferase system of Escherichia coli: mathematical modeling approach to analysis of its kinetic properties. J Biophys. 2011; 2011:579402. https://www.hindawi.com/journals/jbp/2011/579402/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weigel N, Kukuruzinska MA, Nakazawa A, Waygood EB, Roseman S. Sugar transport by the bacterial phosphotransferase system. phosphoryl transfer reactions catalyzed by enzyme i of Salmonella typhimurium,. J Biol Chem. 1982; 257(23):14477–91.
CAS
PubMed
Google Scholar
Pflüger K, de Lorenzo V. Evidence of In Vivo cross talk between the nitrogen-related and fructose-related branches of the carbohydrate phosphotransferase system of pseudomonas putida. J Bacteriol. 2008; 190(9):3374–80. https://doi.org/10.1128/JB.02002-07.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ely B, Amarasinghe A, Bender RA. Ammonia Assimilation and Glutamate Formation in Caulobacter crescentus. J Bacteriol. 1978; 133(1):225–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel HV, Vyas KA, Mattoo RL, Southworth M, Perler FB. Properties of the C-terinal domain of Enzyme I of the Escherichia coli phosphotransferase system. J Biol Chem. 2005; 281(26):17579–87. https://doi.org/10.1074/jbc.M508966200.
Article
CAS
Google Scholar
Houot L, Chang S, Pickering BS, Absalon C, Watnick PI. The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J Bacteriol. 2010; 192(12):3055–67. https://jb.asm.org/content/192/12/3055.short.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li YZ, Wang D, Feng XY, Jiao J, Chen WX, Tian CF. Genetic analysis reveals the essential role of nitrogen phosphotransferase system components in Sinorhizobium fredii CCBAU 45436 symbioses with Soybean and Pigeonpea Plants. Appl Environ Microbiol. 2016; 82(4):1305–15. https://doi.org/10.1128/AEM.03454-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Gilles ED, Lengeler JW, Jahreis K. Modeling of inducer exclusion and catabolite repression based on a pts-dependent sucrose and non-pts-dependent glycerol transport systems in Escherichia coli k-12 and its experimental verification. J Biotechnol. 2001; 92(2):133–58. https://doi.org/10.1016/S0168-1656(01)00354-6. Biochemical Engineering: Trends and Potentials.
Article
CAS
PubMed
Google Scholar
Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate: Carbohydrate Phosphotransferase System of Bacteria. Microbiol Rev. 1993; 57(3):543–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mattoo RL, Waygood EB. Determination of the levels of HPr and enzyme I of the phosphoenolpyruvate-sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium. Can J Biochem Cell Biol. 1983; 61(1):29–37. https://pubmed.ncbi.nlm.nih.gov/6406017/.
Article
CAS
PubMed
Google Scholar
Scholte BJ, Schuitema AR, Postma PW. Isolation of III Glc of the phosphoenolpyruvate-dependent glucose phosphotransferase system of Salmonella typhimurium. J Bacteriol. 1981; 148(1):1257–264. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC216188/.
Article
Google Scholar
Abel S, Bucher T, Nicollier M, Hug I, Kaever V, Wiesch PAZ, Jenal U. Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the Caulobacter cell cycle. PLOS Genetics. 2013; 9(9):1003744. https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003744.
Article
CAS
Google Scholar
Benoist C, Guérin C, Noirot P, Dervyn E. Constitutive stringent response restores viability of Bacillus subtilis lacking structural maintenance of chromosome protein. PLOS One. 2015; 10(11):e0142308. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142308.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boutte C, Henry JT, Crosson S. ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus. J Bacteriol. 2012; 194(1):28–35. https://jb.asm.org/content/194/1/28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Povolotsky TL, Hengge R. ‘Life-style’ control networks in Escherichia coli: Signaling by the second messenger c-di-GMP. J Biotechnol. 2012; 160(1-2):10–16. https://www.sciencedirect.com/science/article/abs/pii/S0168165611007024?via%3Dihub.
Article
CAS
PubMed
Google Scholar
Abel S, Chien P, Wassmann P, Schirmer T, Kaever V, Laub MT, Baker TA, Jenal U. Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks. Mol Cell. 2011; 43(4):550–60. https://doi.org/10.1016/j.molcel.2011.07.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodwin RA, Gage DJ. Biochemical characterization of a nitrogen-type phosphotransferase system reveals that enzyme EI Ntr integrates carbon and nitrogen signaling in Sinorhizobium meliloti. J Bacteriol. 2014; 196(10):1901–7. https://jb.asm.org/content/196/10/1901.
Article
PubMed
PubMed Central
CAS
Google Scholar
Joshi KK, Battle CM, Chien P. Polar localization hub protein PopZ restrains adaptor-dependent ClpXP proteolysis in Caulobacter crescentus. J Bacteriol. 2018; 200(20):e00221–18. https://jb.asm.org/content/200/20/e00221-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kharadi R, Castiblanco F, Waters M, Sundina W. Phosphodiesterase genes regulate amylovoran production, biofilm formation, and virulence in Erwinia amylovora. Appl Environ Microbiol. 2019; 85(1):02233–18. https://doi.org/10.1128/AEM.02233-18.
Google Scholar
Purcell EB, Tamayo R. Cyclic diguanylate signaling in Gram-positive bacteria. FEMS Microbiol Rev. 2016; 40(5):753–73. https://doi.org/10.1093/femsre/fuw013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abel S. Analysis of the c-di-GMP mediated cell fate determination in Caulobacter crescentus. PhD thesis, Universität Basel, Department of Biozentrum. 2009.
Commichau FM, Forchhammer K, Stülke J. Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol. 2006; 9(2):167–72. https://doi.org/10.1016/j.mib.2006.01.001. Cell Regulation / Edited by Werner Goebel and Stephen Lory.
Article
CAS
PubMed
Google Scholar
Deutscher J, Aké F, Derkaoui M, Zébré A, Cao T, Bouraoui H, Kentache T, Mokhtari A, Milohanic E, Joyet P. The bacterial phosphoenolpyruvate: carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev. 2014; 78(2):231–56. https://doi.org/10.1128/MMBR.00001-14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deutscher J, Francke C, Postma W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev. 2006; 70(4):939–1031. https://doi.org/10.1128/MMBR.00024-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kundig W, Roseman S. Sugar transport. i. isolation of a phosphotransferase system from Escherichia coli,. J Biol Chem. 1971; 246(5):1393–406.
CAS
PubMed
Google Scholar
Lee C, Park Y, Kim M, Kim Y, Park S, Peterkofsky A, Seok Y. Reciprocal regulation of the autophosphorylation of Enzyme I Ntr by Glutamine and α-Ketoglutarate in Escherichia coli. Mol Microbio. 2013; 88(3):473–85. https://doi.org/10.1111/mmi.12196.
Article
CAS
Google Scholar
Brauer MJ, Yuan J, Bennett BD, Lu W, Kimball E, Botstein D, Rabinowitz JD. Conservation of the metabolomic response to starvation acroos two divergent microbes. PNAS. 2006; 103(51):19302–7. https://doi.org/10.1073/pnas.0609508103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osanai T, Oikawa A, Shirai T, Kuwahara A, Lijima H, Tanaka K, Ikeuchi M, Kondo A, Saito K, Hirai MY. Capillary electrophoresis–mass spectrometry reveals the distribution of carbon metabolites during nitrogen starvation in Synechocystis sp. PCC 6803. Environ Microbiol. 2014; 16(2):512–24. https://doi.org/10.1111/1462-2920.12170.
Article
CAS
PubMed
Google Scholar
Yuan J, Doucette CD, Fowler WU, Feng XJ, Piazza M, Rabitz HA, Wingreen NS, Rabinowitz D. Metabolomics-driven quantitative analysis of ammonia assimilation in E.coli. Mol Sys Biol. 2009; 5(302):19302–7. https://doi.org/10.1038/msb.2009.60.
Google Scholar
Hogema BM, Arents JC, Bader R, Eijkemans K, Yoshida H, Takahashi H, Alba H, Postma PW. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIA Glc. Mol Microbiol. 1998; 30(3):487–98. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2958.1998.01053.x.
Article
CAS
PubMed
Google Scholar
Gorbatyuk B, Marczynski GT. Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus. Mol Microbiol. 2005; 55(4):1233–45. https://doi.org/10.1111/j.1365-2958.2004.04459.x.
Article
CAS
PubMed
Google Scholar
Flärdh K, Axberg T, Albertson N, Kjelleberg S. Stringent control during carbon starvation of marine Vibrio Sp. Strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene. J Bacteriol. 1994; 176(19):5949–57. https://jb.asm.org/content/176/19/5949.
Article
PubMed
PubMed Central
Google Scholar
Bennett B, Kimball E, Gao M, Osterhout R, Van Dien S, Rabinowitz D. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol. 2009; 5(8):593–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer M, Zimmerman TP, Short SA. A rapid method for the determination of Guanosine 5′-triphosphate- 3′-diphosphate by high-performance liquid chromatography. Anal Biochem. 1982; 121(1):135–9.
Article
CAS
PubMed
Google Scholar
Gonzalez D, Collier J. Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus. J Bacteriol. 2014; 196(14):2514–25. https://jb.asm.org/content/196/14/2514.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li S, Brazhnik P, Sobral B, Tyson JJ. Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus. PLOS Comput Biol. 2009; 5(8):e1000463. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714070/.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kremling A, Pflüger-Grau K, Chavarria M, Puchalka J, Santos V. Modeling and analysis of flux distributions in the two branches of the phosphotransferase system in Pseudomonas putida. BMC Syst Biol. 2012; 6(149):149. https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-6-149.
Article
CAS
PubMed
PubMed Central
Google Scholar