Bhalla US, Iyengar R: Emergent properties of networks of biological signaling pathways. Science 1999, 283(5400):381–387. 10.1126/science.283.5400.381
Article
CAS
PubMed
Google Scholar
Cho KH, Wolkenhauer O: Analysis and modelling of signal transduction pathways in systems biology. Biochem Soc Trans 2003, 31(Pt 6):1503–1509. 10.1042/BST0311503
Article
CAS
PubMed
Google Scholar
Janes KA, Yaffe MB: Data-driven modelling of signal-transduction networks. Nat Rev Mol Cell Biol 2006, 7(11):820–828. 10.1038/nrm2041
Article
CAS
PubMed
Google Scholar
Levchenko A: Dynamical and integrative cell signaling: challenges for the new biology. Biotechnol Bioeng 2003, 84(7):773–782. 10.1002/bit.10854
Article
CAS
PubMed
Google Scholar
Liu Y, Zhao H: A computational approach for ordering signal transduction pathway components from genomics and proteomics Data. BMC Bioinformatics 2004, 5: 158. 10.1186/1471-2105-5-158
Article
PubMed
PubMed Central
Google Scholar
Neves SR, Iyengar R: Modeling of signaling networks. Bioessays 2002, 24(12):1110–1117. 10.1002/bies.1154
Article
CAS
PubMed
Google Scholar
Steffen M, Petti A, Aach J, D'Haeseleer P, Church G: Automated modelling of signal transduction networks. BMC Bioinformatics 2002, 3: 34. 10.1186/1471-2105-3-34
Article
PubMed
PubMed Central
Google Scholar
Suresh Babu CV, Joo Song E, Yoo YS: Modeling and simulation in signal transduction pathways: a systems biology approach. Biochimie 2006, 88(3–4):277–283. 10.1016/j.biochi.2005.08.006
Article
CAS
PubMed
Google Scholar
Forsten-Williams K, Chua CC, Nugent MA: The kinetics of FGF-2 binding to heparan sulfate proteoglycans and MAP kinase signaling. J Theor Biol 2005, 233(4):483–499. 10.1016/j.jtbi.2004.10.020
Article
CAS
PubMed
Google Scholar
Goldstein B, Faeder JR, Hlavacek WS: Mathematical and computational models of immune-receptor signalling. Nat Rev Immunol 2004, 4(6):445–456. 10.1038/nri1374
Article
CAS
PubMed
Google Scholar
Kitano H: International alliances for quantitative modeling in systems biology. Mol Syst Biol 2005, 1: 2005 0007. 10.1038/msb4100011
Article
PubMed
PubMed Central
Google Scholar
Meng TC, Somani S, Dhar P: Modeling and simulation of biological systems with stochasticity. Silico Biol 2004, 4(3):293–309.
CAS
Google Scholar
Snoep JL: The Silicon Cell initiative: working towards a detailed kinetic description at the cellular level. Curr Opin Biotechnol 2005, 16(3):336–343. 10.1016/j.copbio.2005.05.003
Article
CAS
PubMed
Google Scholar
Stucki JW, Simon HU: Mathematical modeling of the regulation of caspase-3 activation and degradation. J Theor Biol 2005, 234(1):123–131. 10.1016/j.jtbi.2004.11.011
Article
CAS
PubMed
Google Scholar
Yang CR, Shapiro BE, Hung SP, Mjolsness ED, Hatfield GW: A mathematical model for the branched chain amino acid biosynthetic pathways of Escherichia coli K12. J Biol Chem 2005, 280(12):11224–11232. 10.1074/jbc.M411471200
Article
CAS
PubMed
Google Scholar
Cateau H, Tanaka S: Kinetic analysis of multisite phosphorylation using analytic solutions to Michaelis-Menten equations. J Theor Biol 2002, 217(1):1–14. 10.1006/jtbi.2002.3024
Article
CAS
PubMed
Google Scholar
Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SP: Accessing genetic information with high-density DNA arrays. Science 1996, 274(5287):610–614. 10.1126/science.274.5287.610
Article
CAS
PubMed
Google Scholar
Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270(5235):467–470. 10.1126/science.270.5235.467
Article
CAS
PubMed
Google Scholar
Garner MM, Revzin A: A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 1981, 9(13):3047–3060. 10.1093/nar/9.13.3047
Article
CAS
PubMed
PubMed Central
Google Scholar
Fried M, Crothers DM: Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 1981, 9(23):6505–6525. 10.1093/nar/9.23.6505
Article
CAS
PubMed
PubMed Central
Google Scholar
D'Haeseleer P, Liang S, Somogyi R: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 2000, 16(8):707–726. 10.1093/bioinformatics/16.8.707
Article
PubMed
Google Scholar
Husmeier D: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003, 19(17):2271–2282. 10.1093/bioinformatics/btg313
Article
CAS
PubMed
Google Scholar
Liang S, Fuhrman S, Somogyi R: Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac Symp Biocomput 1998, 18–29.
Google Scholar
Repsilber D, Liljenstrom H, Andersson SG: Reverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypotheses. Biosystems 2002, 66(1–2):31–41. 10.1016/S0303-2647(02)00019-9
Article
PubMed
Google Scholar
Soranzo N, Bianconi G, Altafini C: Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics 2007, 23(13):1640–1647. 10.1093/bioinformatics/btm163
Article
CAS
PubMed
Google Scholar
Tegner J, Yeung MK, Hasty J, Collins JJ: Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc Natl Acad Sci USA 2003, 100(10):5944–5949. 10.1073/pnas.0933416100
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Joshi T, Zhang XS, Xu D, Chen L: Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 2006, 22(19):2413–2420. 10.1093/bioinformatics/btl396
Article
CAS
PubMed
Google Scholar
Zak DE, Gonye GE, Schwaber JS, Doyle FJ: Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Res 2003, 13(11):2396–2405. 10.1101/gr.1198103
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardner TS, Faith JJ: Reverse-engineering transcription control networks. Phys Life Rev 2005, 2: 65–88. 10.1016/j.plrev.2005.01.001
Article
PubMed
Google Scholar
Chen HC, Lee HC, Lin TY, Li WH, Chen BS: Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics 2004, 20(12):1914–1927. 10.1093/bioinformatics/bth178
Article
CAS
PubMed
Google Scholar
Raychaudhuri S, Stuart JM, Altman RB: Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 2000, 455–466.
Google Scholar
Liebermeister W: Linear modes of gene expression determined by independent component analysis. Bioinformatics 2002, 18(1):51–60. 10.1093/bioinformatics/18.1.51
Article
CAS
PubMed
Google Scholar
Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP: Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci USA 2003, 100(26):15522–15527. 10.1073/pnas.2136632100
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayden MS, West AP, Ghosh S: NF-kappaB and the immune response. Oncogene 2006, 25(51):6758–6780. 10.1038/sj.onc.1209943
Article
CAS
PubMed
Google Scholar
Berardi M, Canonica GW: The inflammatory network. Monaldi Arch Chest Dis 2002, 57(2):147.
CAS
PubMed
Google Scholar
Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, et al.: A network-based analysis of systemic inflammation in humans. Nature 2005, 437(7061):1032–1037. 10.1038/nature03985
Article
CAS
PubMed
Google Scholar
Hirsch E: Signal transduction in inflammation. Perspective clues from the leukocyte-endothelium interface. Thromb Haemost 2006, 95(1):3–4.
CAS
PubMed
Google Scholar
Jayapal M, Tay HK, Reghunathan R, Zhi L, Chow KK, Rauff M, Melendez AJ: Genome-wide gene expression profiling of human mast cells stimulated by IgE or FcepsilonRI-aggregation reveals a complex network of genes involved in inflammatory responses. BMC Genomics 2006, 7: 210. 10.1186/1471-2164-7-210
Article
PubMed
PubMed Central
Google Scholar
Kuwano K, Hara N: Signal transduction pathways of apoptosis and inflammation induced by the tumor necrosis factor receptor family. Am J Respir Cell Mol Biol 2000, 22(2):147–149.
Article
CAS
PubMed
Google Scholar
Saban R, D'Andrea MR, Andrade-Gordon P, Derian CK, Dozmorov I, Ihnat MA, Hurst RE, Simpson C, Saban MR: Regulatory network of inflammation downstream of proteinase-activated receptors. BMC Physiol 2007, 7: 3. 10.1186/1472-6793-7-3
Article
PubMed
PubMed Central
Google Scholar
Boldrick JC, Alizadeh AA, Diehn M, Dudoit S, Liu CL, Belcher CE, Botstein D, Staudt LM, Brown PO, Relman DA: Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci USA 2002, 99(2):972–977. 10.1073/pnas.231625398
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheong R, Hoffmann A, Levchenko A: Understanding NF-kappaB signaling via mathematical modeling. Mol Syst Biol 2008, 4: 192. 10.1038/msb.2008.30
Article
PubMed
PubMed Central
Google Scholar
Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, et al.: TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 2006, (34 Database):D108–110. 10.1093/nar/gkj143
Moynagh PN: The NF-kappaB pathway. J Cell Sci 2005, 118(Pt 20):4589–4592. 10.1242/jcs.02579
Article
CAS
PubMed
Google Scholar
Werner SL, Barken D, Hoffmann A: Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 2005, 309(5742):1857–1861. 10.1126/science.1113319
Article
CAS
PubMed
Google Scholar
Gerondakis S, Grossmann M, Nakamura Y, Pohl T, Grumont R: Genetic approaches in mice to understand Rel/NF-kappaB and IkappaB function: transgenics and knockouts. Oncogene 1999, 18(49):6888–6895. 10.1038/sj.onc.1203236
Article
CAS
PubMed
Google Scholar
Ghosh S, May MJ, Kopp EB: NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998, 16: 225–260. 10.1146/annurev.immunol.16.1.225
Article
CAS
PubMed
Google Scholar
Li Q, Verma IM: NF-kappaB regulation in the immune system. Nat Rev Immunol 2002, 2(10):725–734. 10.1038/nri910
Article
CAS
PubMed
Google Scholar
Liou HC: Regulation of the immune system by NF-kappaB and IkappaB. J Biochem Mol Biol 2002, 35(6):537–546.
Article
CAS
PubMed
Google Scholar
Karin M, Delhase M: The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol 2000, 12(1):85–98. 10.1006/smim.2000.0210
Article
CAS
PubMed
Google Scholar
Cheong R, Bergmann A, Werner SL, Regal J, Hoffmann A, Levchenko A: Transient IkappaB kinase activity mediates temporal NF-kappaB dynamics in response to a wide range of tumor necrosis factor-alpha doses. J Biol Chem 2006, 281(5):2945–2950. 10.1074/jbc.M510085200
Article
CAS
PubMed
Google Scholar
Kearns JD, Basak S, Werner SL, Huang CS, Hoffmann A: IκBε provides negative feedback to control NF-kappaB oscillations, signaling dynamics, and inflammatory gene expression. J Cell Biol 2006, 173(5):659–664. 10.1083/jcb.200510155
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuno H, Tanaka Y, Aoshima H, Doi A, Matsui M, Miyano S: Biopathways representation and simulation on hybrid functional Petri net. Silico Biol 2003, 3(3):389–404.
CAS
Google Scholar
Peng SC, Chang HM, Hsu DF, Tang CY: Modeling Signal Transduction of Neural System by Hybrid Petri Net Representation. In Operations Research Proceedings: 2004; Tilburg. Springer; 2004:271–279.
Google Scholar
Dunne A, O'Neill LA: The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003, 2003(171):re3. 10.1126/stke.2003.171.re3
PubMed
Google Scholar
Guergnon J, Chaussepied M, Sopp P, Lizundia R, Moreau MF, Blumen B, Werling D, Howard CJ, Langsley G: A tumour necrosis factor alpha autocrine loop contributes to proliferation and nuclear factor-kappaB activation of Theileria parva-transformed B cells. Cell Microbiol 2003, 5(10):709–716. 10.1046/j.1462-5822.2003.00314.x
Article
CAS
PubMed
Google Scholar
Netea MG, van der Meer JW, van Deuren M, Kullberg BJ: Proinflammatory cytokines and sepsis syndrome: not enough, or too much of a good thing? Trends Immunol 2003, 24(5):254–258. 10.1016/S1471-4906(03)00079-6
Article
CAS
PubMed
Google Scholar
Durocher A, Becq MC, Gosset P, Saulnier F, Lefebvre MC, Tonnel AB, Capron A, Wattel F: [TNF and sepsis]. Ann Med Interne (Paris) 1991, 142(2):91–94.
CAS
Google Scholar
Dinarello CA: Proinflammatory and anti-inflammatory cytokines as mediators in the pathogenesis of septic shock. Chest 1997, 112(6 Suppl):321S-329S. 10.1378/chest.112.6_Supplement.321S
Article
CAS
PubMed
Google Scholar
Makino T, Noguchi Y, Yoshikawa T, Doi C, Nomura K: Circulating interleukin 6 concentrations and insulin resistance in patients with cancer. Br J Surg 1998, 85(12):1658–1662. 10.1046/j.1365-2168.1998.00938.x
Article
CAS
PubMed
Google Scholar
Febbraio MA, Pedersen BK: Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev 2005, 33(3):114–119. 10.1097/00003677-200507000-00003
Article
PubMed
Google Scholar
Wagner TH, Drewry AM, Macmillan S, Dunne WM, Chang KC, Karl IE, Hotchkiss RS, Cobb JP: Surviving sepsis: bcl-2 overexpression modulates splenocyte transcriptional responses in vivo. Am J Physiol Regul Integr Comp Physiol 2007, 292(4):R1751–1759.
Article
CAS
PubMed
Google Scholar
De Plaen IG, Han XB, Liu X, Hsueh W, Ghosh S, May MJ: Lipopolysaccharide induces CXCL2/macrophage inflammatory protein-2 gene expression in enterocytes via NF-kappaB activation: independence from endogenous TNF-alpha and platelet-activating factor. Immunology 2006, 118(2):153–163. 10.1111/j.1365-2567.2006.02344.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi H, Tashiro T, Miyazaki M, Kobayashi M, Pollard RB, Suzuki F: An essential role of macrophage inflammatory protein 1alpha/CCL3 on the expression of host's innate immunities against infectious complications. J Leukoc Biol 2002, 72(6):1190–1197.
CAS
PubMed
Google Scholar
Tak PP, Firestein GS: NF-kappaB: a key role in inflammatory diseases. J Clin Invest 2001, 107(1):7–11. 10.1172/JCI11830
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto Y, Gaynor RB: Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 2001, 107(2):135–142. 10.1172/JCI11914
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann A, Levchenko A, Scott ML, Baltimore D: The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 2002, 298(5596):1241–1245. 10.1126/science.1071914
Article
CAS
PubMed
Google Scholar
Lipniacki T, Paszek P, Brasier AR, Luxon B, Kimmel M: Mathematical model of NF-kappaB regulatory module. J Theor Biol 2004, 228(2):195–215. 10.1016/j.jtbi.2004.01.001
Article
CAS
PubMed
Google Scholar
Nagasaki M, Doi A, Matsuno H, Miyano S: Genomic Object Net: I. A platform for modelling and simulating biopathways. Appl Bioinformatics 2003, 2(3):181–184.
CAS
PubMed
Google Scholar
Sharif O, Bolshakov VN, Raines S, Newham P, Perkins ND: Transcriptional profiling of the LPS induced NF-kappaB response in macrophages. BMC Immunol 2007, 8: 1. 10.1186/1471-2172-8-1
Article
PubMed
PubMed Central
Google Scholar