Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC: A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 1958, 181: 662–666. 10.1038/181662a0
Article
CAS
PubMed
Google Scholar
Keating AE: A rational route to probing membrane proteins. Genome Biol 2007, 8: 214. 10.1186/gb-2007-8-5-214
Article
PubMed Central
PubMed
Google Scholar
Jensen ON: Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 2004, 8: 33–41. 10.1016/j.cbpa.2003.12.009
Article
PubMed
Google Scholar
Warringer J, Blomberg A: Evolutionary constraints on yeast protein size. BMC Evol Biol 2006, 6: 61. 10.1186/1471-2148-6-61
Article
PubMed Central
PubMed
Google Scholar
Zhang X, Settembre E, Xu C, Dormitzer PR, Bellamy R, Harrison SC, Grigorieff N: Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci USA 2008, 105: 1867–1872. 10.1073/pnas.0711623105
Article
PubMed Central
CAS
PubMed
Google Scholar
Yu X, Jin L, Zhou ZH: 3.88 A structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 2008, 453: 415–419. 10.1038/nature06893
Article
PubMed Central
CAS
PubMed
Google Scholar
Moult J, Pedersen JT, Judson R, Fidelis K: A large-scale experiment to assess protein structure prediction methods. Proteins 1995, 23: ii-v. 10.1002/prot.340230303
Article
CAS
PubMed
Google Scholar
Levitt M: Growth of novel protein structural data. Proc Natl Acad Sci USA 2007, 104: 3183–3188. 10.1073/pnas.0611678104
Article
PubMed Central
CAS
PubMed
Google Scholar
Murzin AG, Brenner SE, Hubbard T, Chothia C: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 1995, 247: 536–540.
CAS
PubMed
Google Scholar
Chothia C: Proteins. One thousand families for the molecular biologist. Nature 1992, 357: 543–544. 10.1038/357543a0
Article
CAS
PubMed
Google Scholar
Levitt M: Nature of the protein universe. Proc Natl Acad Sci USA 2009, 106: 11079–11084. 10.1073/pnas.0905029106
Article
PubMed Central
CAS
PubMed
Google Scholar
Cozzetto D, Tramontano A: Relationship between multiple sequence alignments and quality of protein comparative models. Proteins 2005, 58: 151–157. 10.1002/prot.20284
Article
CAS
PubMed
Google Scholar
Tramontano A, Morea V: Assessment of homology-based predictions in CASP5. Proteins 2003, 53(Suppl 6):352–368. 10.1002/prot.10543
Article
CAS
PubMed
Google Scholar
Tress M, Tai CH, Wang G, Ezkurdia I, Lopez G, Valencia A, Lee B, Dunbrack RL Jr: Domain definition and target classification for CASP6. Proteins 2005, 61(Suppl 7):8–18. 10.1002/prot.20717
Article
CAS
PubMed
Google Scholar
Tress M, Ezkurdia I, Grana O, Lopez G, Valencia A: Assessment of predictions submitted for the CASP6 comparative modeling category. Proteins 2005, 61(Suppl 7):27–45. 10.1002/prot.20720
Article
CAS
PubMed
Google Scholar
Wlodawer A, Minor W, Dauter Z, Jaskolski M: Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 2008, 275: 1–21. 10.1111/j.1742-4658.2008.06444.x
Article
PubMed Central
CAS
PubMed
Google Scholar
Kleywegt GJ, Jones TA: Homo crystallographicus--quo vadis? Structure 2002, 10: 465–472. 10.1016/S0969-2126(02)00743-8
Article
CAS
PubMed
Google Scholar
Brown EN, Ramaswamy S: Quality of protein crystal structures. Acta Crystallogr D Biol Crystallogr 2007, 63: 941–950. 10.1107/S0907444907033847
Article
CAS
PubMed
Google Scholar
Ilari A, Savino C: Protein structure determination by x-ray crystallography. Methods Mol Biol 2008, 452: 63–87. full_text
Article
CAS
PubMed
Google Scholar
Browne WJ, North AC, Phillips DC, Brew K, Vanaman TC, Hill RL: A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen's egg-white lysozyme. J Mol Biol 1969, 42: 65–86. 10.1016/0022-2836(69)90487-2
Article
CAS
PubMed
Google Scholar
Acharya KR, Stuart DI, Walker NP, Lewis M, Phillips DC: Refined structure of baboon alpha-lactalbumin at 1.7 A resolution. Comparison with C-type lysozyme. J Mol Biol 1989, 208: 99–127. 10.1016/0022-2836(89)90091-0
Article
CAS
PubMed
Google Scholar
Acharya KR, Stuart DI, Phillips DC, Scheraga HA: A critical evaluation of the predicted and X-ray structures of alpha-lactalbumin. J Protein Chem 1990, 9: 549–563. 10.1007/BF01025008
Article
CAS
PubMed
Google Scholar
Baker D, Sali A: Protein structure prediction and structural genomics. Science 2001, 294: 93–96. 10.1126/science.1065659
Article
CAS
PubMed
Google Scholar
Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, Stuart AC, Marti-Renom MA, Madhusudhan MS, Yerkovich B, Sali A: Tools for comparative protein structure modeling and analysis. Nucleic Acids Res 2003, 31: 3375–3380. 10.1093/nar/gkg543
Article
PubMed Central
CAS
PubMed
Google Scholar
Koh IY, Eyrich VA, Marti-Renom MA, Przybylski D, Madhusudhan MS, Eswar N, Grana O, Pazos F, Valencia A, Sali A, Rost B: EVA: Evaluation of protein structure prediction servers. Nucleic Acids Res 2003, 31: 3311–3315. 10.1093/nar/gkg619
Article
PubMed Central
CAS
PubMed
Google Scholar
Brunger AT: Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 1992, 355: 472–475. 10.1038/355472a0
Article
CAS
PubMed
Google Scholar
Matthews BW: Five retracted structure reports: Inverted or incorrect? Protein Sci 2007, 16: 1013–1016. 10.1110/ps.072888607
Article
PubMed Central
CAS
PubMed
Google Scholar
Hanson MA, Stevens RC: Retraction: Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0 A resolution. Nat Struct Mol Biol 2009, 16: 795. 10.1038/nsmb0709-795
Article
CAS
PubMed
Google Scholar
Kleywegt GJ: On vital aid: the why, what and how of validation. Acta Crystallogr D Biol Crystallogr 2009, 65: 134–139. 10.1107/S090744490900081X
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang H, Guranovic V, Dutta S, Feng Z, Berman HM, Westbrook JD: Automated and accurate deposition of structures solved by X-ray diffraction to the Protein Data Bank. Acta Crystallogr D Biol Crystallogr 2004, 60: 1833–1839. 10.1107/S0907444904019419
Article
PubMed
Google Scholar
Wuthrich K: Protein structure determination in solution by NMR spectroscopy. J Biol Chem 1990, 265: 22059–22062.
CAS
PubMed
Google Scholar
Grzesiek S, Sass HJ: From biomolecular structure to functional understanding: new NMR developments narrow the gap. Curr Opin Struct Biol 2009, 19: 585–595. 10.1016/j.sbi.2009.07.015
Article
CAS
PubMed
Google Scholar
Wuthrich K: NMR studies of structure and function of biological macromolecules (Nobel Lecture). J Biomol NMR 2003, 27: 13–39. 10.1023/A:1024733922459
Article
PubMed
Google Scholar
Wuthrich K: NMR in biological research: peptides and proteins. North-Holland Publishing Co., Amsterdam; 1976.
Google Scholar
Saccenti E, Rosato A: The war of tools: how can NMR spectroscopists detect errors in their structures? J Biomol NMR 2008, 40: 251–261. 10.1007/s10858-008-9228-4
Article
CAS
PubMed
Google Scholar
Sali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993, 234: 779–815. 10.1006/jmbi.1993.1626
Article
CAS
PubMed
Google Scholar
Levitt M: Accurate modeling of protein conformation by automatic segment matching. J Mol Biol 1992, 226: 507–533. 10.1016/0022-2836(92)90964-L
Article
CAS
PubMed
Google Scholar
Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 2003, 31: 3381–3385. 10.1093/nar/gkg520
Article
PubMed Central
CAS
PubMed
Google Scholar
Bates PA, Kelley LA, MacCallum RM, Sternberg MJ: Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins 2001, (Suppl 5):39–46. 10.1002/prot.1168
Koehl P, Delarue M: A self consistent mean field approach to simultaneous gap closure and side-chain positioning in homology modelling. Nat Struct Biol 1995, 2: 163–170. 10.1038/nsb0295-163
Article
CAS
PubMed
Google Scholar
Petrey D, Xiang Z, Tang CL, Xie L, Gimpelev M, Mitros T, Soto CS, Goldsmith-Fischman S, Kernytsky A, Schlessinger A, et al.: Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling. Proteins 2003, 53(Suppl 6):430–435. 10.1002/prot.10550
Article
CAS
PubMed
Google Scholar
Kopp J, Schwede T: The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res 2004, 32: D230–234. 10.1093/nar/gkh008
Article
PubMed Central
CAS
PubMed
Google Scholar
Roessler CG, Hall BM, Anderson WJ, Ingram WM, Roberts SA, Montfort WR, Cordes MH: Transitive homology-guided structural studies lead to discovery of Cro proteins with 40% sequence identity but different folds. Proc Natl Acad Sci USA 2008, 105: 2343–2348. 10.1073/pnas.0711589105
Article
PubMed Central
CAS
PubMed
Google Scholar
Alexander PA, He Y, Chen Y, Orban J, Bryan PN: The design and characterization of two proteins with 88% sequence identity but different structure and function. Proc Natl Acad Sci USA 2007, 104: 11963–11968. 10.1073/pnas.0700922104
Article
PubMed Central
CAS
PubMed
Google Scholar
di Luccio E, Wilson DK: Comprehensive X-ray Structural Studies of the Quinolinate Phosphoribosyl Transferase (BNA6) from Saccharomyces cerevisiae. Biochemistry 2008, 47: 4039–4050. 10.1021/bi7020475
Article
CAS
PubMed
Google Scholar
Torda AE: Perspectives in protein-fold recognition. Curr Opin Struct Biol 1997, 7: 200–205. 10.1016/S0959-440X(97)80026-7
Article
CAS
PubMed
Google Scholar
Friedberg I, Jaroszewski L, Ye Y, Godzik A: The interplay of fold recognition and experimental structure determination in structural genomics. Curr Opin Struct Biol 2004, 14: 307–312. 10.1016/j.sbi.2004.04.005
Article
CAS
PubMed
Google Scholar
Buchete NV, Straub JE, Thirumalai D: Development of novel statistical potentials for protein fold recognition. Curr Opin Struct Biol 2004, 14: 225–232. 10.1016/j.sbi.2004.03.002
Article
CAS
PubMed
Google Scholar
Venclovas C: Comparative modeling in CASP5: progress is evident, but alignment errors remain a significant hindrance. Proteins 2003, 53(Suppl 6):380–388. 10.1002/prot.10591
Article
CAS
PubMed
Google Scholar
Dunbrack RL Jr: Sequence comparison and protein structure prediction. Curr Opin Struct Biol 2006, 16: 374–384. 10.1016/j.sbi.2006.05.006
Article
CAS
PubMed
Google Scholar
Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5: 113. 10.1186/1471-2105-5-113
Article
PubMed Central
PubMed
Google Scholar
Subramanian AR, Kaufmann M, Morgenstern B: DIALIGN-TX: greedy and progressive approaches for segment-based multiple sequence alignment. Algorithms Mol Biol 2008, 3: 6. 10.1186/1748-7188-3-6
Article
PubMed Central
PubMed
Google Scholar
Fidelis K, Stern PS, Bacon D, Moult J: Comparison of systematic search and database methods for constructing segments of protein structure. Protein Eng 1994, 7: 953–960. 10.1093/protein/7.8.953
Article
CAS
PubMed
Google Scholar
van Vlijmen HW, Karplus M: PDB-based protein loop prediction: parameters for selection and methods for optimization. J Mol Biol 1997, 267: 975–1001. 10.1006/jmbi.1996.0857
Article
CAS
PubMed
Google Scholar
Olson MA, Feig M, Brooks CL: Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions. J Comput Chem 2008, 29: 820–831. 10.1002/jcc.20827
Article
CAS
PubMed
Google Scholar
Ponder JW, Richards FM: Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol 1987, 193: 775–791. 10.1016/0022-2836(87)90358-5
Article
CAS
PubMed
Google Scholar
Lovell SC, Word JM, Richardson JS, Richardson DC: The penultimate rotamer library. Proteins 2000, 40: 389–408. 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2
Article
CAS
PubMed
Google Scholar
Dunbrack RL Jr, Karplus M: Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains. Nat Struct Biol 1994, 1: 334–340. 10.1038/nsb0594-334
Article
CAS
PubMed
Google Scholar
Dunbrack RL Jr, Karplus M: Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J Mol Biol 1993, 230: 543–574. 10.1006/jmbi.1993.1170
Article
CAS
PubMed
Google Scholar
Vasquez M: Modeling side-chain conformation. Curr Opin Struct Biol 1996, 6: 217–221. 10.1016/S0959-440X(96)80077-7
Article
CAS
PubMed
Google Scholar
Koehl P, Delarue M: Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy. J Mol Biol 1994, 239: 249–275. 10.1006/jmbi.1994.1366
Article
CAS
PubMed
Google Scholar
Ohlendorf DH: Acuracy of refined protein structures. II. Comparison of four independently refined models of human interleukin 1beta. Acta Crystallogr D Biol Crystallogr 1994, 50: 808–812. 10.1107/S0907444994002659
Article
CAS
PubMed
Google Scholar
Moult J: A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr Opin Struct Biol 2005, 15: 285–289. 10.1016/j.sbi.2005.05.011
Article
CAS
PubMed
Google Scholar
Koehl P, Levitt M: Structure-based conformational preferences of amino acids. Proc Natl Acad Sci USA 1999, 96: 12524–12529. 10.1073/pnas.96.22.12524
Article
PubMed Central
CAS
PubMed
Google Scholar
Levitt M, Lifson S: Refinement of protein conformations using a macromolecular energy minimization procedure. J Mol Biol 1969, 46: 269–279. 10.1016/0022-2836(69)90421-5
Article
CAS
PubMed
Google Scholar
Misura KM, Chivian D, Rohl CA, Kim DE, Baker D: Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proc Natl Acad Sci USA 2006, 103: 5361–5366. 10.1073/pnas.0509355103
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhu J, Fan H, Periole X, Honig B, Mark AE: Refining homology models by combining replica-exchange molecular dynamics and statistical potentials. Proteins 2008, 72: 1171–1188. 10.1002/prot.22005
Article
PubMed Central
CAS
PubMed
Google Scholar
Summa CM, Levitt M: Near-native structure refinement using in vacuo energy minimization. Proc Natl Acad Sci USA 2007, 104: 3177–3182. 10.1073/pnas.0611593104
Article
PubMed Central
CAS
PubMed
Google Scholar
Chopra G, Summa CM, Levitt M: Solvent dramatically affects protein structure refinement. Proc Natl Acad Sci USA 2008, 105: 20239–20244. 10.1073/pnas.0810818105
Article
PubMed Central
CAS
PubMed
Google Scholar
Brunger AT: Free R value: cross-validation in crystallography. Methods Enzymol 1997, 277: 366–396. full_text
Article
CAS
PubMed
Google Scholar
Moult J, Fidelis K, Kryshtafovych A, Rost B, Hubbard T, Tramontano A: Critical assessment of methods of protein structure prediction-Round VII. Proteins 2007, 69(Suppl 8):3–9. 10.1002/prot.21767
Article
PubMed Central
CAS
PubMed
Google Scholar
Sippl MJ: Knowledge-based potentials for proteins. Curr Opin Struct Biol 1995, 5: 229–235. 10.1016/0959-440X(95)80081-6
Article
CAS
PubMed
Google Scholar
Fang Q, Shortle D: A consistent set of statistical potentials for quantifying local side-chain and backbone interactions. Proteins 2005, 60: 90–96. 10.1002/prot.20482
Article
CAS
PubMed
Google Scholar
Summa CM, Levitt M, Degrado WF: An atomic environment potential for use in protein structure prediction. J Mol Biol 2005, 352: 986–1001. 10.1016/j.jmb.2005.07.054
Article
CAS
PubMed
Google Scholar
Berglund A, Head RD, Welsh EA, Marshall GR: ProVal: a protein-scoring function for the selection of native and near-native folds. Proteins 2004, 54: 289–302. 10.1002/prot.10523
Article
CAS
PubMed
Google Scholar
Wallner B, Elofsson A: Can correct protein models be identified? Protein Sci 2003, 12: 1073–1086. 10.1110/ps.0236803
Article
PubMed Central
CAS
PubMed
Google Scholar
Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC: Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 2003, 50: 437–450. 10.1002/prot.10286
Article
CAS
PubMed
Google Scholar
Laskowski RA, MacArthur MW, Moss DS, Thornton JM: PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993, 26: 283–291. 10.1107/S0021889892009944
Article
CAS
Google Scholar
Vriend G: WHAT IF: a molecular modeling and drug design program. J Mol Graph 1990, 8: 52–56, 29. 10.1016/0263-7855(90)80070-V
Article
CAS
PubMed
Google Scholar
McGuffin LJ, Bryson K, Jones DT: The PSIPRED protein structure prediction server. Bioinformatics 2000, 16: 404–405. 10.1093/bioinformatics/16.4.404
Article
CAS
PubMed
Google Scholar
Jones DT: Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999, 292: 195–202. 10.1006/jmbi.1999.3091
Article
CAS
PubMed
Google Scholar
Frishman D, Argos P: Knowledge-based protein secondary structure assignment. Proteins 1995, 23: 566–579. 10.1002/prot.340230412
Article
CAS
PubMed
Google Scholar
Siew N, Elofsson A, Rychlewski L, Fischer D: MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics 2000, 16: 776–785. 10.1093/bioinformatics/16.9.776
Article
CAS
PubMed
Google Scholar
Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R: Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 1998, 26: 320–322. 10.1093/nar/26.1.320
Article
PubMed Central
CAS
PubMed
Google Scholar
Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14: 755–763. 10.1093/bioinformatics/14.9.755
Article
CAS
PubMed
Google Scholar
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, et al.: The Pfam protein families database. Nucleic Acids Res 2004, (32 Database):D138–141. 10.1093/nar/gkh121
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22: 4673–4680. 10.1093/nar/22.22.4673
Article
PubMed Central
CAS
PubMed
Google Scholar
Venclovas C, Zemla A, Fidelis K, Moult J: Assessment of progress over the CASP experiments. Proteins 2003, 53(Suppl 6):585–595. 10.1002/prot.10530
Article
CAS
PubMed
Google Scholar
Di Luccio E, Petschacher B, Voegtli J, Chou HT, Stahlberg H, Nidetzky B, Wilson DK: Structural and kinetic studies of induced fit in xylulose kinase from Escherichia coli. J Mol Biol 2007, 365: 783–798. 10.1016/j.jmb.2006.10.068
Article
PubMed Central
CAS
PubMed
Google Scholar
Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997, 18: 2714–2723. 10.1002/elps.1150181505
Article
CAS
PubMed
Google Scholar
Kolinski A: Protein modeling and structure prediction with a reduced representation. Acta Biochim Pol 2004, 51: 349–371.
CAS
PubMed
Google Scholar
Koehl P, Delarue M: Mean-field minimization methods for biological macromolecules. Curr Opin Struct Biol 1996, 6: 222–226. 10.1016/S0959-440X(96)80078-9
Article
CAS
PubMed
Google Scholar
Wiederstein M, Sippl MJ: ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007, 35: W407–410. 10.1093/nar/gkm290
Article
PubMed Central
PubMed
Google Scholar
Shen MY, Sali A: Statistical potential for assessment and prediction of protein structures. Protein Sci 2006, 15: 2507–2524. 10.1110/ps.062416606
Article
PubMed Central
CAS
PubMed
Google Scholar
Benkert P, Tosatto SC, Schomburg D: QMEAN: A comprehensive scoring function for model quality assessment. Proteins 2008, 71: 261–277. 10.1002/prot.21715
Article
CAS
PubMed
Google Scholar
Paiva AC, Oliveira L, Horn F, Bywater RP, Vriend G: Modeling GPCRs. Ernst Schering Found Symp Proc 2006, 23–47.
Google Scholar