Lee RC, Ambros V: An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001, 294 (5543): 862-864.
Article
PubMed
CAS
Google Scholar
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116 (2): 281-297.
Article
PubMed
CAS
Google Scholar
Visone R, Croce CM: MiRNAs and cancer. Am J Pathol. 2009, 174 (4): 1131-1138.
Article
PubMed Central
PubMed
CAS
Google Scholar
Krol J, Loedige I, Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010, 11 (9): 597-610.
PubMed
CAS
Google Scholar
Korner C, Keklikoglou I, Bender C, Worner A, Munstermann E, Wiemann S: MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C epsilon (PKCepsilon). J Biol Chem. 2013, 288 (12): 8750-8761.
Article
PubMed Central
PubMed
Google Scholar
Xia H, Ooi LL, Hui KM: MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology. 2013, 58 (2): 629-641.
Article
PubMed
CAS
Google Scholar
Le HS, Bar-Joseph Z: Integrating sequence, expression and interaction data to determine condition-specific miRNA regulation. Bioinformatics. 2013, 29 (13): i89-i97.
Article
PubMed Central
PubMed
CAS
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120 (1): 15-20.
Article
PubMed
CAS
Google Scholar
Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N: Combinatorial microRNA target predictions. Nat Genet. 2005, 37 (5): 495-500.
Article
PubMed
CAS
Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biol. 2003, 5 (1): R1-
Article
PubMed Central
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005, 102 (43): 15545-15550.
Article
PubMed Central
PubMed
CAS
Google Scholar
Cheng C, Li LM: Inferring microRNA activities by combining gene expression with microRNA target prediction. PLoS One. 2008, 3 (4): e1989-
Article
PubMed Central
PubMed
Google Scholar
Sevignani C, Calin GA, Siracusa LD, Croce CM: Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome. 2006, 17 (3): 189-202.
Article
PubMed Central
PubMed
CAS
Google Scholar
Schratt G: Fine-tuning neural gene expression with microRNAs. Curr Opin Neurobiol. 2009, 19 (2): 213-219.
Article
PubMed
CAS
Google Scholar
Ebert MS, Sharp PA: Roles for microRNAs in conferring robustness to biological processes. Cell. 2012, 149 (3): 515-524.
Article
PubMed Central
PubMed
CAS
Google Scholar
Roy J, Winter C, Isik Z, Schroeder M: Network information improves cancer outcome prediction. Brief Bioinform. 2014, 15 (4): 612-625.
Article
PubMed
CAS
Google Scholar
Morrison JL, Breitling R, Higham DJ, Gilbert DR: GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinformatics. 2005, 6: 233-
Article
PubMed Central
PubMed
Google Scholar
Pan JY, Yanh HJ, Faloutsos C, Duygulu P: Proc 10th ACM SIGKDD Int Conf Knowl Discovery Data Mining. Automatic multimedia cross-modal correlation discovery. 2004, 653-658.
Google Scholar
Ham B, Min D, Sohn K: A generalized random walk with restart and its application in depth up-sampling and interactive segmentation. IEEE Trans Image Process. 2013, 22 (7): 2574-2588.
Article
PubMed
Google Scholar
Lutz RR, Woodhouse RM: Requirements analysis using forward and backward search. Ann Softw Eng. 1997, 3 (1): 459-475.
Article
Google Scholar
Network propagation based method (NP-method). [http://bioinfo.au.tsinghua.edu.cn/software/np/]
Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R: NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res. 2009, 37 (Database issue): D885-D890.
Article
PubMed Central
PubMed
CAS
Google Scholar
Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003, 19 (2): 185-193.
Article
PubMed
CAS
Google Scholar
Maglott D, Ostell J, Pruitt KD, Tatusova T: Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 2011, 39 (Database issue): D52-D57.
Article
PubMed Central
PubMed
CAS
Google Scholar
Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Straarup EM, Hansen HF, Koch T, Pappin D, Hannon GJ, Kauppinen S: Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet. 2011, 43 (4): 371-378.
Article
PubMed Central
PubMed
CAS
Google Scholar
Frost RJ, Olson EN: Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci U S A. 2011, 108 (52): 21075-21080.
Article
PubMed Central
PubMed
CAS
Google Scholar
Noble WS: How does multiple testing correction work?. Nat Biotechnol. 2009, 27 (12): 1135-1137.
Article
PubMed Central
PubMed
CAS
Google Scholar
Bovolenta LA, Acencio ML, Lemke N: HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics. 2012, 13: 405-
Article
PubMed Central
PubMed
CAS
Google Scholar
Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, Mering CV: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011, 39 (Database issue): D561-D568.
Article
PubMed Central
PubMed
CAS
Google Scholar
Forbes DA: What is a p value and what does it mean?. Evid Based Nurs. 2012, 15 (2): 34-
Article
PubMed
Google Scholar
Zou KH, O’Malley AJ, Mauri L: Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 2007, 115 (5): 654-657.
Article
PubMed
Google Scholar
Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y: miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009, 37 (Database issue): D98-D104.
Article
PubMed Central
PubMed
CAS
Google Scholar
Gregersen LH, Jacobsen AB, Frankel LB, Wen J, Krogh A, Lund AH: MicroRNA-145 targets YES and STAT1 in colon cancer cells. PLoS One. 2010, 5 (1): e8836-
Article
PubMed Central
PubMed
Google Scholar
Ostenfeld MS, Bramsen JB, Lamy P, Villadsen SB, Fristrup N, Sorensen KD, Ulhoi B, Borre M, Kjems J, Dyrskjot L, Orntoft TF: miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene. 2010, 29 (7): 1073-1084.
Article
PubMed
CAS
Google Scholar
Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, Chiyomaru T, Enokida H, Nakagawa M, Matsubara H: miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer. 2010, 127 (12): 2804-2814.
Article
PubMed
CAS
Google Scholar
Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH, Wu MC, Huang CY, Tsou AP, Huang HD: miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 2011, 39 (Database issue): D163-D169.
Article
PubMed Central
PubMed
CAS
Google Scholar
Xiong B, Cheng Y, Ma L, Zhang C: MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol. 2013, 42 (1): 219-228.
PubMed
CAS
Google Scholar
Qin X, Yan L, Zhao X, Li C, Fu Y: microRNA-21 overexpression contributes to cell proliferation by targeting PTEN in endometrioid endometrial cancer. Oncol Lett. 2012, 4 (6): 1290-1296.
PubMed Central
PubMed
CAS
Google Scholar
Michl P, Ramjaun AR, Pardo OE, Warne PH, Wagner M, Poulsom R, D’Arrigo C, Ryder K, Menke A, Gress T, Downward J: CUTL1 is a target of TGF(beta) signaling that enhances cancer cell motility and invasiveness. Cancer Cell. 2005, 7 (6): 521-532.
Article
PubMed
CAS
Google Scholar
Ripka S, Neesse A, Riedel J, Bug E, Aigner A, Poulsom R, Fulda S, Neoptolemos J, Greenhalf W, Barth P, Gress TM, Michl P: CUX1: target of Akt signalling and mediator of resistance to apoptosis in pancreatic cancer. Gut. 2010, 59 (8): 1101-1110.
Article
PubMed
CAS
Google Scholar
Takahashi S, Fusaki N, Ohta S, Iwahori Y, Iizuka Y, Inagawa K, Kawakami Y, Yoshida K, Toda M: Downregulation of KIF23 suppresses glioma proliferation. J Neurooncol. 2012, 106 (3): 519-529.
Article
PubMed
CAS
Google Scholar
Fischer M, Grundke I, Sohr S, Quaas M, Hoffmann S, Knorck A, Gumhold C, Rother K: p53 and cell cycle dependent transcription of kinesin family member 23 (KIF23) is controlled via a CHR promoter element bound by DREAM and MMB complexes. PLoS One. 2013, 8 (5): e63187-
Article
PubMed Central
PubMed
CAS
Google Scholar
Hausser J, Syed AP, Selevsek N, van Nimwegen E, Jaskiewicz L, Aebersold R, Zavolan M: Timescales and bottlenecks in miRNA-dependent gene regulation. Mol Syst Biol. 2013, 9: 711-
Article
PubMed Central
PubMed
CAS
Google Scholar
Wang X, Wang X: Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res. 2006, 34 (5): 1646-1652.
Article
PubMed Central
PubMed
CAS
Google Scholar
Bail S, Swerdel M, Liu H, Jiao X, Goff LA, Hart RP, Kiledjian M: Differential regulation of microRNA stability. RNA. 2010, 16 (5): 1032-1039.
Article
PubMed Central
PubMed
CAS
Google Scholar
Jaenicke R: Protein stability and molecular adaptation to extreme conditions. Eur J Biochem. 1991, 202 (3): 715-728.
Article
PubMed
CAS
Google Scholar
Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, Bian XW, Guan XY, Lin MC, Zeng YX, Kung HF, Xie D: The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut. 2012, 61 (2): 278-289.
Article
PubMed
CAS
Google Scholar
Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J: miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010, 31 (5): 766-776.
Article
PubMed
CAS
Google Scholar
da Huang W, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA: The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007, 8 (9): R183-
Article
PubMed
Google Scholar
Hong Y, Ho KS, Eu KW, Cheah PY: A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling pathways: implication for tumorigenesis. Clin Cancer Res. 2007, 13 (4): 1107-1114.
Article
PubMed
CAS
Google Scholar
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M: pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics. 2011, 12: 77-
Article
PubMed Central
PubMed
Google Scholar
Jahid S, Sun J, Edwards RA, Dizon D, Panarelli NC, Milsom JW, Sikandar SS, Gumus ZH, Lipkin SM: miR-23a promotes the transition from indolent to invasive colorectal cancer. Cancer Discov. 2012, 2 (6): 540-553.
Article
PubMed Central
PubMed
CAS
Google Scholar
Zhang J, Xiao Z, Lai D, Sun J, He C, Chu Z, Ye H, Chen S, Wang J: miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Br J Cancer. 2012, 107 (2): 352-359.
Article
PubMed Central
PubMed
CAS
Google Scholar
Bakirtzi K, Hatziapostolou M, Karagiannides I, Polytarchou C, Jaeger S, Iliopoulos D, Pothoulakis C: Neurotensin signaling activates microRNAs-21 and −155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology. 2011, 141 (5): 1749-1761. e1741
Article
PubMed Central
PubMed
CAS
Google Scholar
Zhu L, Chen H, Zhou D, Li D, Bai R, Zheng S, Ge W: MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility. Med Oncol. 2012, 29 (2): 1037-1043.
Article
PubMed
CAS
Google Scholar
Ma YL, Zhang P, Wang F, Moyer MP, Yang JJ, Liu ZH, Peng JY, Chen HQ, Zhou YK, Liu WJ, Qin HL: Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b. J Cell Mol Med. 2011, 15 (9): 1941-1954.
Article
PubMed Central
PubMed
CAS
Google Scholar
Yin Y, Yan ZP, Lu NN, Xu Q, He J, Qian X, Yu J, Guan X, Jiang BH, Liu LZ: Downregulation of miR-145 associated with cancer progression and VEGF transcriptional activation by targeting N-RAS and IRS1. Biochim Biophys Acta. 2013, 1829 (2): 239-247.
Article
PubMed
CAS
Google Scholar
Yang IP, Tsai HL, Hou MF, Chen KC, Tsai PC, Huang SW, Chou WW, Wang JY, Juo SH: MicroRNA-93 inhibits tumor growth and early relapse of human colorectal cancer by affecting genes involved in the cell cycle. Carcinogenesis. 2012, 33 (8): 1522-1530.
Article
PubMed
CAS
Google Scholar
Zhang H, Hao Y, Yang J, Zhou Y, Li J, Yin S, Sun C, Ma M, Huang Y, Xi JJ: Genome-wide functional screening of miR-23b as a pleiotropic modulator suppressing cancer metastasis. Nat Commun. 2011, 2: 554-
Article
PubMed
Google Scholar
Kim BC, van Gelder H, Kim TA, Lee HJ, Baik KG, Chun HH, Lee DA, Choi KS, Kim SJ: Activin receptor-like kinase-7 induces apoptosis through activation of MAPKs in a Smad3-dependent mechanism in hepatoma cells. J Biol Chem. 2004, 279 (27): 28458-28465.
Article
PubMed
CAS
Google Scholar
Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006, 5 (10): 821-834.
Article
PubMed
CAS
Google Scholar
Al-Lazikani B, Banerji U, Workman P: Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol. 2012, 30 (7): 679-692.
Article
PubMed
CAS
Google Scholar
Sanoudou D, Mountzios G, Arvanitis DA, Pectasides D: Array-based pharmacogenomics of molecular-targeted therapies in oncology. Pharmacogenomics J. 2012, 12 (3): 185-196.
Article
PubMed
CAS
Google Scholar