Tennessen JA, Bigham AW, Connor TDO, Fu W, Kenny EE, Gravel S, Mcgee S, Do R, Liu X, Jun G, et al. Evolution and functional impact of rare coding variation from deep sequencing of human Exomes. Science. 2012;337:64–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74.
Article
CAS
Google Scholar
Manolio TA, Fowler DM, Starita LM, Haendel MA, MacArthur DG, Biesecker LG, Worthey E, Chisholm RL, Green ED, Jacob HJ, et al. Bedside Back to bench: building bridges between basic and clinical genomic research. Cell. 2017;169:6–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Beer TAP, Laskowski RA, Parks SL, Sipos B, Goldman N, Thornton JM. Amino acid changes in disease-associated variants differ radically from variants observed in the 1000 genomes project dataset. PLoS Comput Biol. 2013;9.
Mahlich Y, Reeb J, Hecht M, Schelling M, De Beer TAP, Bromberg Y, Rost B. Common sequence variants affect molecular function more than rare variants? Sci Rep. 2017;7:1608.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rost B, Radivojac P, Bromberg Y. Protein function in precision medicine: deep understanding with machine learning. FEBS Lett. 2016;590:2327–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Starita LM, Ahituv N, Dunham MJ, Kitzman JO, Roth FP, Seelig G, Shendure J, Fowler DM. Variant interpretation: functional assays to the rescue. Am J Hum Genet. 2017;101:315–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capriotti E, Ozturk K, Carter H. Integrating molecular networks with genetic variant interpretation for precision medicine. Wiley Interdiscip Rev Syst Biol Med. 2019;11(3):e1443.
Article
PubMed
Google Scholar
Daneshjou R, Wang Y, Bromberg Y, Bovo S, Martelli PL, Babbi G, Lena PD, Casadio R, Edwards M, Gifford D, et al. Working toward precision medicine: predicting phenotypes from exomes in the critical assessment of genome interpretation (CAGI) challenges. Hum Mutat. 2017;38:1182–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bromberg Y, Yachdav G, Rost B. SNAP predicts effect of mutations on protein function. Bioinformatics (Oxford, England). 2008;24:2397–8.
Article
CAS
Google Scholar
Hecht M, Bromberg Y, Rost B. News from the protein mutability landscape. J Mol Biol. 2013;425:3937–48.
Article
CAS
PubMed
Google Scholar
Hietpas R, Roscoe B, Jiang L, Bolon DNA. Fitness analyses of all possible point mutations for regions of genes in yeast. Nat Protoc. 2012;7:1382–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wrenbeck EE, Faber MS, Whitehead TA. Deep sequencing methods for protein engineering and design. Curr Opin Struct Biol. 2017;45:36–44.
Article
CAS
PubMed
Google Scholar
Araya CL, Fowler DM. Deep mutational scanning: assessing protein function on a massive scale. Trends Biotechnol. 2011;29:435–442.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fowler DM, Stephany JJ, Fields S. Measuring the activity of protein variants on a large scale using deep mutational scanning. Nat Protoc. 2014;9:2267–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fowler DM, Fields S. Deep mutational scanning: a new style of protein science. Nat Methods. 2014;11:801–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eyre-Walker A, Keightley PD. The distribution of fitness effects of new mutations. Nat Rev Genet. 2007;8:610–8.
Article
CAS
PubMed
Google Scholar
Forsyth CM, Juan V, Akamatsu Y, DuBridge RB, Doan M, Ivanov AV, Zhiyuan M, Polakoff D, Razo J, Wilson K, et al. Deep mutational scanning of an antibody against epidermal growth factor receptor using mammalian cell display and massively parallel pyrosequencing. MAbs. 2013;5:523–32.
Article
PubMed
PubMed Central
Google Scholar
Mavor D, Barlow K, Thompson S, Barad BA, Bonny AR, Cario CL, Gaskins G, Liu Z, Deming L, Axen SD, et al. Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom setting. eLife. 2016;5:1–23.
Article
Google Scholar
Mavor D, Barlow KA, Asarnow D, Birman Y, Britain D, Chen W, Green EM, Kenner LR, Mensa B, Morinishi LS, et al. Extending chemical perturbations of the ubiquitin fitness landscape in a classroom setting reveals new constraints on sequence tolerance. Biology Open. 2018;7:bio036103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, et al. Computational design of ligand-binding proteins with high affinity and selectivity. Nature. 2013;501:212–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Procko E, Hedman R, Hamilton K, Seetharaman J, Fleishman SJ, Su M, Aramini J, Kornhaber G, Hunt JF, Tong L, et al. Computational design of a protein-based enzyme inhibitor. J Mol Biol. 2013;425:3563–75.
Article
CAS
PubMed
Google Scholar
Whitehead TA, Chevalier A, Song Y, Dreyfus C, Fleishman SJ, De Mattos C, Myers CA, Kamisetty H, Blair P, Wilson IA, et al. Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat Biotechnol. 2012;30:543–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujino Y, Fujita R, Wada K, Fujishige K, Kanamori T, Hunt L, Shimizu Y, Ueda T. Robust in vitro affinity maturation strategy based on interface-focused high-throughput mutational scanning. Biochem Biophys Res Commun. 2012;428:395–400.
Article
CAS
PubMed
Google Scholar
Rogers JM, Passioura T, Suga H. Nonproteinogenic deep mutational scanning of linear and cyclic peptides. Proc Natl Acad Sci. 2018;115:201809901.
Article
CAS
Google Scholar
Roscoe BP, Thayer KM, Zeldovich KB, Fushman D, Bolon DNA. Analyses of the effects of all ubiquitin point mutants on yeast growth rate. J Mol Biol. 2013;425:1363–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roscoe BP, Bolon DNA. Systematic exploration of ubiquitin sequence, E1 activation efficiency, and experimental fitness in yeast. J Mol Biol. 2014;18:1199–216.
Google Scholar
Starita LM, Young DL, Islam M, Kitzman JO, Gullingsrud J, Hause RJ, Fowler DM, Parvin JD, Shendure J, Fields S. Massively parallel functional analysis of BRCA1 RING domain variants. Genetics. 2015;200:413–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP, Gasperini M, Janizek JD, Huang X, Starita LM, Shendure J. Accurate classification of BRCA1 variants with saturation genome editing. Nature. 2018;562:217–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melnikov A, Rogov P, Wang L, Gnirke A, Mikkelsen TS. Comprehensive mutational scanning of a kinase in vivo reveals substrate-dependent fitness landscapes. Nucleic Acids Res. 2014;42:1–8.
Article
CAS
Google Scholar
Matreyek KA, Starita LM, Stephany JJ, Martin B, Chiasson MA, Gray VE, Kircher M, Khechaduri A, Dines JN, Hause RJ, et al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat Genet. 2018;50:874–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R. Functional annotations improve the predictive score of human disease-related mutations in proteins. Human Mutat. 2009;30:1237–44.
Article
CAS
Google Scholar
Capriotti E, Calabrese R, Fariselli P, Martelli PL, Altman RB, Casadio R. WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation. BMC genomics. 2013;14(Suppl 3).
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886–D894.
Article
PubMed Central
CAS
Google Scholar
Yates CM, Filippis I, Kelley LA, Sternberg MJE. SuSPect: Enhanced prediction of single amino acid variant (SAV) phenotype using network features. J Mol Biol. 2014;426: Elsevier B.V.:2692–701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hecht M, Bromberg Y, Rost B. Better prediction of functional effects for sequence variants. BMC Genomics. 2015;16:S1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:452–7.
Article
CAS
Google Scholar
Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, Musolf A, Li Q, Holzinger E, Karyadi D, et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am J Hum Genet. 2016;99: American Society of Human Genetics:877–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carter H, Douville C, Stenson PD, Cooper DN, Karchin R. Identifying Mendelian disease genes with the variant effect scoring tool. BMC genomics. 2013;14(Suppl 3):S3.
Article
PubMed
PubMed Central
Google Scholar
Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 2019;47:D1038–43.
Article
CAS
PubMed
Google Scholar
Kawabata T, Ota M, Nishikawa K. The protein mutant database. Nucleic Acids Res. 1999;27:355–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–15.
Article
CAS
Google Scholar
Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44:D862–8.
Article
CAS
PubMed
Google Scholar
Reeb J, Hecht M, Mahlich Y, Bromberg Y, Rost B. Predicted molecular effects of sequence variants link to system level of disease. PLoS Comput Biol. 2016;12:e1005047.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pejaver V, Babbi G, Casadio R, Folkman L, Katsonis P, Kundu K, Lichtarge O, Martelli PL, Miller M, Moult J, et al. Assessment of methods for predicting the effects of PTEN and TPMT protein variants. Human Mutat. 2019;40:1495–506.
Article
CAS
Google Scholar
Livesay B, Marsh JA. Using deep mutational scanning data to benchmark computational phenotype predictors and identify pathogenic missense mutations. bioRxiv. 2019.
Gray VE, Hause RJ, Luebeck J, Shendure J, Fowler DM. Quantitative Missense Variant Effect Prediction Using Large-Scale Mutagenesis Data. Cell Systems. 2018;6:116–24 e113.
Article
CAS
PubMed
Google Scholar
Adkar BV, Tripathi A, Sahoo A, Bajaj K, Goswami D, Chakrabarti P, Swarnkar MK, Gokhale RS, Varadarajan R. Protein model discrimination using mutational sensitivity derived from deep sequencing. Structure. 2012;20:371–81.
Article
CAS
PubMed
Google Scholar
Araya CL, Fowler DM, Chen W, Muniez I, Kelly JW, Fields S. A fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of protein function. Proc Natl Acad Sci. 2012;109:16858–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brenan L, Andreev A, Cohen O, Pantel S, Kamburov A, Cacchiarelli D, Persky NS, Zhu C, Bagul M, Goetz EM, et al. Phenotypic characterization of a comprehensive set of MAPK1/ERK2 missense mutants. Cell Rep. 2016;17:1171–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heredia JD, Park J, Brubaker RJ, Szymanski SK, Gill KS, Procko E. Mapping interaction sites on human chemokine receptors by deep mutational scanning. J Immunol. 2018;200:3825–39.
Article
CAS
PubMed
Google Scholar
Hietpas RT, Jensen JD, Bolon DNA. Experimental illumination of a fitness landscape. Proc Natl Acad Sci. 2011;108:7896–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hietpas RT, Bank C, Jensen JD, Bolon DNA. Shifting fitness landscapes in response to altered environments. Evolution. 2013;67:3512–22.
Article
PubMed
Google Scholar
Jiang L, Mishra P, Hietpas RT, Zeldovich KB, Bolon DNA. Latent effects of Hsp90 mutants revealed at reduced expression levels. PLoS Genet. 2013;9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitzman JO, Starita LM, Lo RS, Fields S, Shendure J. Massively parallel single amino acid mutagenesis. Nat Methods. 2014;44:3516–21.
Google Scholar
Klesmith JR, Bacik JP, Michalczyk R, Whitehead TA. Comprehensive sequence-flux mapping of a Levoglucosan utilization pathway in E. coli. ACS Synth Biol. 2015;4:1235–43.
Article
CAS
PubMed
Google Scholar
Majithia AR, Tsuda B, Agostini M, Gnanapradeepan K, Rice R, Peloso G, Patel KA, Zhang X, Broekema MF, Patterson N, et al. Prospective functional classification of all possible missense variants in PPARG. Nat Genet. 2016;48:1570–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rockah-Shmuel L, Tóth-Petróczy Á, Tawfik DS. Systematic mapping of protein mutational space by prolonged drift reveals the deleterious effects of seemingly neutral mutations. PLoS Comput Biol. 2015;11:1–28.
Article
CAS
Google Scholar
Romero PA, Tran TM, Abate AR. Dissecting enzyme function with microfluidic-based deep mutational scanning. Proc Natl Acad Sci. 2015;112:7159–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarkisyan KS, Bolotin DA, Meer MV, Usmanova DR, Mishin AS, Sharonov GV, Ivankov DN, Bozhanova NG, Baranov MS, Soylemez O, et al. Local fitness landscape of the green fluorescent protein. Nature. 2016;533:397–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Starita LM, Pruneda JN, Lo RS, Fowler DM, Kim HJ, Hiatt JB, Shendure J, Brzovic PS, Fields S, Klevit RE. Activity-enhancing mutations in an E3 ubiquitin ligase identified by high-throughput mutagenesis. Proc Natl Acad Sci. 2013;110:E1263–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stiffler Michael A, Hekstra Doeke R, Ranganathan R. Evolvability as a function of purifying selection in TEM-1 β-lactamase. Cell. 2015;160:882–92.
Article
CAS
PubMed
Google Scholar
Traxlmayr MW, Hasenhindl C, Hackl M, Stadlmayr G, Rybka JD, Borth N, Grillari J, Rüker F, Obinger C. Construction of a stability landscape of the CH3 domain of human IgG1 by combining directed evolution with high throughput sequencing. J Mol Biol. 2012;423:397–412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bromberg Y, Kahn PC, Rost B. Neutral and weakly nonneutral sequence variants may define individuality. Proc Natl Acad Sci U S A. 2013;110:14255–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bromberg Y, Rost B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 2007;35:3823–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23.
Article
PubMed
PubMed Central
Google Scholar
Niroula A, Vihinen M. How good are pathogenicity predictors in detecting benign variants ? PLoS Comput Biol. 2019;15:1–17.
Article
CAS
Google Scholar
Andersen LL, Terczyńska-Dyla E, Mørk N, Scavenius C, Enghild JJ, Höning K, Hornung V, Christiansen M, Mogensen TH, Hartmann R. Frequently used bioinformatics tools overestimate the damaging effect of allelic variants. Genes Immun. 2017;20:10–22.
Article
PubMed
CAS
Google Scholar
Anderson D, Lassmann T. A phenotype centric benchmark of variant prioritisation tools. Genomic Medicine. 2018;3.
Grimm DG, Azencott CA, Aicheler F, Gieraths U, Macarthur DG, Samocha KE, Cooper DN, Stenson PD, Daly MJ, Smoller JW, et al. The evaluation of tools used to predict the impact of missense variants is hindered by two types of circularity. Hum Mutat. 2015;36:513–23.
Article
PubMed
PubMed Central
Google Scholar
Miller M, Bromberg Y, Swint-Kruse L. Computational predictors fail to identify amino acid substitution effects at rheostat positions. Sci Rep. 2017;7:41329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cline MS, Babbi G, Bonache S, Cao Y, Casadio R, Cruz X, Díez O, Gutiérrez-Enríquez S, Katsonis P, Lai C, et al. Assessment of blind predictions of the clinical significance of BRCA1 and BRCA2 variants. Human Mutat. 2019;40:1546–56.
Article
Google Scholar
Stein A, Fowler DM, Hartmann-Petersen R, Lindorff-Larsen K. Biophysical and mechanistic models for disease-causing protein variants. Trends Biochem Sci. 2019;44:575–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riesselman AJ, Ingraham JB, Marks DS. Deep generative models of genetic variation capture the effects of mutations. Nature Methods. 2018;15: Springer US:816–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim, Y., Ki, C., & Jang, M. (2019). Challenges and Considerations in Sequence Variant Interpretation for Mendelian Disorders. Annals of Laboratory Medicine, 39(5), 421. https://doi.org/10.3343/alm.2019.39.5.421.
Article
PubMed
PubMed Central
Google Scholar
Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rives A, Goyal S, Meier J, Guo D, Ott M, Zitnick CL, Ma J, Fergus R. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. bioRxiv preprint. 2019.
Heinzinger M, Elnaggar A, Wang Y, Dallago C, Nechaev D, Matthes F, Rost B. Modeling aspects of the language of life through transfer-learning protein sequences. BMC Bioinformatics. 2019;20(1):723. https://doi.org/10.1186/s12859-019-3220-8.
Pundir S, Martin MJ, O'Donovan C. UniProt tools. Curr Protoc Bioinformatics. 2016;53:1.29.21–21.29.15.
Article
Google Scholar
Esposito D, Weile J, Shendure J, Starita LM, Papenfuss AT, Roth FP, Fowler DM, Rubin AF. MaveDB: an open-source platform to distribute and interpret data from multiplexed assays of variant effect. Genome Biol. 2019;20(1):223. https://doi.org/10.1186/s13059-019-1845-6.
Firnberg E, Labonte JW, Gray JJ, Ostermeier M. A comprehensive, high-resolution map of a Gene's fitness landscape. Mol Biol Evol. 2014;31:1581–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fabian P, Michel V, Grisel O, Blondel M, Prettenhofer P, Weiss R, Vanderplas J, Cournapeau D, Pedregosa F, Varoquaux G, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.
Google Scholar
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., van Mulbregt, P. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilcox RR. Comparing dependent robust correlations. Br J Math Stat Psychol. 2016;69:215–24.
Article
PubMed
Google Scholar
Turck N, Vutskits L, Sanchez-Pena P, Robin X, Hainard A, Gex-Fabry M, Fouda C, Bassem H, Mueller M, Lisacek F, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;8:12–77.
Google Scholar
R Core Team. R: a language and environment for statistical computing. In: R Foundation for Statistical Computing; 2018.
PolyPhen2 Webserver. http://genetics.bwh.harvard.edu/pph2/bgi.shtml Accessed: 15 Apr 2019.
Envision webserver. https://envision.gs.washington.edu/shiny/envision_new/ Accessed: 15 Apr 2019.