Beare PA, Chen C, Bouman T, Pablo J, Unal B, Cockrell DC, et al. Candidate antigens for Q fever serodiagnosis revealed by immunoscreening of a Coxiella burnetii protein microarray. Clin Vaccine Immunol. 2008;15(12):1771–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heinzen RA, Hackstadt T, Samuel JE. Developmental biology of Coxiella burnettii. Trends Microbiol. 1999;7(4):149–54.
Article
CAS
PubMed
Google Scholar
Raoult D, Marrie T, Mege J. Natural history and pathophysiology of Q fever. Lancet Infect Dis. 2005;5(4):219–26.
Article
CAS
PubMed
Google Scholar
Tigertt WD, Benenson AS, Gochenour WS. Airborne Q fever. Bacteriol Rev. 1961;25:285–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Welsh HH, Lennette EH, Abinanti FR, Winn JF. Air-borne transmission of Q fever: the role of parturition in the generation of infective aerosols. Ann N Y Acad Sci. 1958;70(3):528–40.
Article
CAS
PubMed
Google Scholar
Maurin M, Raoult D. Q fever. Clin Microbiol Rev. 1999;12(4):518–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hogerwerf L, van den Brom R, Roest HI, Bouma A, Vellema P, Pieterse M, et al. Reduction of Coxiella burnetii prevalence by vaccination of goats and sheep. The Netherlands Emerg Infect Dis. 2011;17(3):379–86.
Article
PubMed
Google Scholar
Agerholm JS. Coxiella burnetii associated reproductive disorders in domestic animals: a critical review. Acta Vet Scand. 2013;55:13.
Article
PubMed
PubMed Central
Google Scholar
Vigil A, Ortega R, Nakajima-Sasaki R, Pablo J, Molina DM, Chao CC, et al. Genome-wide profiling of humoral immune response to Coxiella burnetii infection by protein microarray. Proteomics. 2010;10(12):2259–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arricau-Bouvery N, Souriau A, Bodier C, Dufour P, Rousset E, Rodolakis A. Effect of vaccination with phase I and phase II Coxiella burnetii vaccines in pregnant goats. Vaccine. 2005;23(35):4392–402.
Article
CAS
PubMed
Google Scholar
Rodolakis A, Berri M, Hechard C, Caudron C, Souriau A, Bodier CC, et al. Comparison of Coxiella burnetii shedding in milk of dairy bovine, caprine, and ovine herds. J Dairy Sci. 2007;90(12):5352–60.
Article
CAS
PubMed
Google Scholar
Marmion BP, Ormsbee RA, Kyrkou M, Wright J, Worswick DA, Izzo AA, et al. Vaccine prophylaxis of abattoir-associated Q fever: eight years’ experience in Australian abattoirs. Epidemiol Infect. 1990;104(2):275–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Dow C, Wang P, Sidney J, Read A, Harmsen A, et al. Identification of CD4+ T cell epitopes in C. burnetii antigens targeted by antibody responses. PLoS One. 2011;6(3):e17712.
Scholzen A, Richard G, Moise L, Baeten LA, Reeves PM, Martin WD, et al. Promiscuous Coxiella burnetii CD4 Epitope Clusters Associated With Human Recall Responses Are Candidates for a Novel T-Cell Targeted Multi-Epitope Q Fever Vaccine. Front Immunol. 2019;10:207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shannon JG, Heinzen RA. Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii. Immunol Res. 2009;43(1–3):138–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang G, Samuel JE. Vaccines against Coxiella infection. Expert Rev Vaccines. 2004;3(5):577–84.
Article
CAS
PubMed
Google Scholar
Jaydari A, Forouharmehr A, Nazifi N. Determination of immunodominant scaffolds of Com1 and OmpH antigens of Coxiella burnetii. Microb Pathog. 2019;126:298–309.
Article
CAS
PubMed
Google Scholar
Xiong X, Meng Y, Wang X, Qi Y, Li J, Duan C, et al. Mice immunized with bone marrow-derived dendritic cells stimulated with recombinant Coxiella burnetii Com1 and Mip demonstrate enhanced bacterial clearance in association with a Th1 immune response. Vaccine. 2012;30(48):6809–15.
Article
CAS
PubMed
Google Scholar
Xiong X, Qi Y, Jiao J, Gong W, Duan C, Wen B. Exploratory study on Th1 epitope-induced protective immunity against Coxiella burnetii infection. PLoS One. 2014;9(1):e87206.
Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform. 2015;53:405–14.
Article
PubMed
Google Scholar
Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J Proteome Res. 2020;19(6):2304–15.
Article
CAS
PubMed
Google Scholar
Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA. Fundamentals and methods for T- and B-cell epitope prediction. J Immunol Res. 2017;2017:2680160.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020;48(W1):W449-W54.
Hisham Y, Ashhab Y. Identification of Cross-Protective Potential Antigens against Pathogenic Brucella spp. through Combining Pan-Genome Analysis with Reverse Vaccinology. J Immunol Res. 2018;2018:1474517.
Fiuza TS, Lima J, de Souza GA. EpitoCore: mining conserved epitope vaccine candidates in the core proteome of multiple bacteria strains. Front Immunol. 2020;11:816.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turvey SE, Broide DH. Innate immunity. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S24-32.
Article
PubMed
Google Scholar
Buttrum L, Ledbetter L, Cherla R, Zhang Y, Mitchell WJ, Zhang G. Both Major Histocompatibility Complex Class I (MHC-I) and MHC-II Molecules Are Required, while MHC-I Appears To Play a Critical Role in Host Defense against Primary Coxiella burnetii Infection. Infect Immun. 2018;86(4).
Li J, Hu F, Chen S, Luo P, He Z, Wang W, et al. Characterization of novel Omp31 antigenic epitopes of Brucella melitensis by monoclonal antibodies. BMC Microbiol. 2017;17(1):115.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pan Pang FZ, Bin J, Ming L, Jinwei H, Ping J, Rongjiong Z, Jianbing D, Yuexin Z. Bioinformatics analysis of T- and B-combined epitopes of OMP31 protein of Brucella melitensis in Xinjiang, China. Int J Clin Exp Med. 2017;10(9):13320–30.
Wang W, Wu J, Qiao J, Weng Y, Zhang H, Liao Q, et al. Evaluation of humoral and cellular immune responses to BP26 and OMP31 epitopes in the attenuated Brucella melitensis vaccinated sheep. Vaccine. 2014;32(7):825–33.
Article
CAS
PubMed
Google Scholar
Read AJ, Erickson S, Harmsen AG. Role of CD4+ and CD8+ T cells in clearance of primary pulmonary infection with Coxiella burnetii. Infect Immun. 2010;78(7):3019–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dellacasagrande J, Capo C, Raoult D, Mege JL. IFN-gamma-mediated control of Coxiella burnetii survival in monocytes: the role of cell apoptosis and TNF. J Immunol. 1999;162(4):2259–65.
CAS
PubMed
Google Scholar
Andoh M, Zhang G, Russell-Lodrigue KE, Shive HR, Weeks BR, Samuel JE. T cells are essential for bacterial clearance, and gamma interferon, tumor necrosis factor alpha, and B cells are crucial for disease development in Coxiella burnetii infection in mice. Infect Immun. 2007;75(7):3245–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zvi A, Rotem S, Zauberman A, Elia U, Aftalion M, Bar-Haim E, et al. Novel CTL epitopes identified through a Y. pestis proteome-wide analysis in the search for vaccine candidates against plague. Vaccine. 2017;35(44):5995–6006.
Arricau-Bouvery N, Hauck Y, Bejaoui A, Frangoulidis D, Bodier CC, Souriau A, et al. Molecular characterization of Coxiella burnetii isolates by infrequent restriction site-PCR and MLVA typing. BMC Microbiol. 2006;6:38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sekeyova Z, Roux V, Raoult D. Intraspecies diversity of Coxiella burnetii as revealed by com1 and mucZ sequence comparison. FEMS Microbiol Lett. 1999;180(1):61–7.
Article
CAS
PubMed
Google Scholar
Hemsley CM, O’Neill PA, Essex-Lopresti A, Norville IH, Atkins TP, Titball RW. Extensive genome analysis of Coxiella burnetii reveals limited evolution within genomic groups. BMC Genomics. 2019;20(1):441.
Article
PubMed
PubMed Central
CAS
Google Scholar
Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE, Nelson WC, et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A. 2003;100(9):5455–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long CM, Beare PA, Cockrell DC, Larson CL, Heinzen RA. Comparative virulence of diverse Coxiella burnetii strains. Virulence. 2019;10(1):133–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ammerdorffer A, Kuley R, Dinkla A, Joosten LAB, Toman R, Roest HJ, et al. Coxiella burnetii isolates originating from infected cattle induce a more pronounced proinflammatory cytokine response compared to isolates from infected goats and sheep. Pathog Dis. 2017;75(4).
Shpynov SN, Tarasevich IV, Skiba AA, Pozdnichenko NN, Gumenuk AS. Comparison of genomes of Coxiella burnetii strains using formal order analysis. New Microbes New Infect. 2018;23:86–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinero A, Barandika JF, Garcia-Perez AL, Hurtado A. Genetic diversity and variation over time of Coxiella burnetii genotypes in dairy cattle and the farm environment. Infect Genet Evol. 2015;31:231–5.
Article
PubMed
Google Scholar
Pearson T, Hornstra HM, Hilsabeck R, Gates LT, Olivas SM, Birdsell DM, et al. High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk. BMC Microbiol. 2014;14:41.
Glazunova O, Roux V, Freylikman O, Sekeyova Z, Fournous G, Tyczka J, et al. Coxiella burnetii genotyping. Emerg Infect Dis. 2005;11(8):1211–7.
CAS
PubMed
PubMed Central
Google Scholar
Neumann RS, Kumar S, Haverkamp TH, Shalchian-Tabrizi K. BLASTGrabber: a bioinformatic tool for visualization, analysis and sequence selection of massive BLAST data. BMC Bioinform. 2014;15:128.
Article
Google Scholar
Maman Y, Nir-Paz R, Louzoun Y. Bacteria modulate the CD8+ T cell epitope repertoire of host cytosol-exposed proteins to manipulate the host immune response. PLoS Comput Biol. 2011;7(10):e1002220.
Nielsen M, Connelley T, Ternette N. Improved prediction of bovine leucocyte antigens (BoLA) presented ligands by use of mass-spectrometry-determined ligand and in vitro binding data. J Proteome Res. 2018;17(1):559–67.
Article
CAS
PubMed
Google Scholar
Rana A, Rub A, Akhter Y. Proteome-wide B and T cell epitope repertoires in outer membrane proteins of Mycobacterium avium subsp. paratuberculosis have vaccine and diagnostic relevance: a holistic approach. J Mol Recognit. 2015;28(8):506–20.
Nain Z, Abdulla F, Rahman MM, Karim MM, Khan MSA, Sayed SB, et al. Proteome-wide screening for designing a multi-epitope vaccine against emerging pathogen Elizabethkingia anophelis using immunoinformatic approaches. J Biomol Struct Dyn. 2020;38(16):4850–67.
Article
CAS
PubMed
Google Scholar
Ghasemi A, Ranjbar R, Amani J. In silico analysis of chimeric TF, Omp31 and BP26 fragments of Brucella melitensis for development of a multi subunit vaccine candidate. Iran J Basic Med Sci. 2014;17(3):172–80.
PubMed
PubMed Central
Google Scholar
Wang L, Khattar MK, Donachie WD, Lutkenhaus J. FtsI and FtsW are localized to the septum in Escherichia coli. J Bacteriol. 1998;180(11):2810–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prachar M, Justesen S, Steen-Jensen DB, Thorgrimsen S, Jurgons E, Winther O, et al. Identification and validation of 174 COVID-19 vaccine candidate epitopes reveals low performance of common epitope prediction tools. Sci Rep. 2020;10(1):20465.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali A, Soares SC, Santos AR, Guimaraes LC, Barbosa E, Almeida SS, et al. Campylobacter fetus subspecies: comparative genomics and prediction of potential virulence targets. Gene. 2012;508(2):145–56.
Article
CAS
PubMed
Google Scholar
Jain S, Goldberg MB. Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol. 2007;189(14):5393–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luedtke BE, Mahapatra S, Lutter EI, Shaw EI. The Coxiella Burnetii type IVB secretion system (T4BSS) component DotA is released/secreted during infection of host cells and during in vitro growth in a T4BSS-dependent manner. Pathog Dis. 2017;75(4).
Segal G, Feldman M, Zusman T. The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol Rev. 2005;29(1):65–81.
Article
CAS
PubMed
Google Scholar
Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017;45(D1):D535–42.
Article
CAS
PubMed
Google Scholar
Pathosystems Resource Integration Center [Available from: https://www.patricbrc.org/.
D’Amato F, Rouli L, Edouard S, Tyczka J, Million M, Robert C, et al. The genome of Coxiella burnetii Z3055, a clone linked to the Netherlands Q fever outbreaks, provides evidence for the role of drift in the emergence of epidemic clones. Comput Immunol Microbiol Infect Dis. 2014;37(5–6):281–8.
Article
Google Scholar
Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A, Gilk SD, et al. Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun. 2009;77(2):642–56.
Article
CAS
PubMed
Google Scholar
Kuley R, Kuijt E, Smits MA, Roest HIJ, Smith HE, Bossers A. Genome plasticity and polymorphisms in critical genes correlate with increased virulence of dutch outbreak-related coxiella burnetii strains. Front Microbiol. 2017;8:1526.
Article
PubMed
PubMed Central
Google Scholar
Beare PA, Jeffrey BM, Martens CA, Pearson T, Heinzen RA. Draft Genome Sequences of Historical Strains of Coxiella burnetii Isolated from Cow's Milk and a Goat Placenta. Genome Announc. 2017;5(39).
Ali A, Naz A, Soares SC, Bakhtiar M, Tiwari S, Hassan SS, et al. Pan-genome analysis of human gastric pathogen H. pylori: comparative genomics and pathogenomics approaches to identify regions associated with pathogenicity and prediction of potential core therapeutic targets. Biomed Res Int. 2015;2015:139580.
McClain S. Bioinformatic screening and detection of allergen cross-reactive IgE-binding epitopes. Mol Nutr Food Res. 2017;61(8).
Gonzalez-Galarza FF, McCabe A, Santos E, Jones J, Takeshita L, Ortega-Rivera ND, et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res. 2020;48(D1):D783–8.
CAS
PubMed
Google Scholar
Allele Frequency Net Database [Available from: http://www.allelefrequencies.net/default.asp.
International Immunogenetics Information System/Human Leukocyte Antigen [Available from: https://www.ebi.ac.uk/ipd/imgt/hla/.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018;35(6):1547–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
NetMHCpan 4.1 [Available from: https://services.healthtech.dtu.dk/service.php?NetMHCpan-4.1.
NetMHCIIpan 4.0 [Available from: https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-4.0.
Perry AJ, Ho BK. Inmembrane, a bioinformatic workflow for annotation of bacterial cell-surface proteomes. Source Code Biol Med. 2013;8(1):9.
Article
PubMed
PubMed Central
Google Scholar
Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 2003;12(8):1652–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80.
Article
CAS
PubMed
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6.
Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, et al. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform. 2002;3(3):265–74.
Article
CAS
PubMed
Google Scholar