Bougen-Zhukov N, Loh SY, Lee HK, Loo LH. Large-scale image-based screening and profiling of cellular phenotypes. Cytometry A. 2017;91(2):115–25.
Article
PubMed
Google Scholar
McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, et al. Cell Profiler 3.0: next-generation image processing for biology. PLoS Biol. 2018;16(7):e2005970.
Article
PubMed
PubMed Central
CAS
Google Scholar
Caicedo JC, Cooper S, Heigwer F, Warchal S, Qiu P, Molnar C, et al. Data-analysis strategies for image-based cell profiling. Nat Methods. 2017;14(9):849–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hussain S, Le Guezennec X, Yi W, Dong H, Chia J, Yiping K, et al. Digging deep into Golgi phenotypic diversity with unsupervised machine learning. Mol Biol Cell. 2017;28(25):3686–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galea G, Simpson JC. High-content screening and analysis of the golgi complex. Methods Cell Biol. 2013. https://doi.org/10.1016/B978-0-12-417164-0.00017-3.
Article
PubMed
Google Scholar
Lin D, Lin Z, Cao J, Velmurugan R, Sally Ward E, Ober RJ. A two-stage method for automated detection of ring-like endosomes in fluorescent microscopy images. PLoS ONE. 2019;14(6):e0218931.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iannetti EF, Smeitink JAM, Beyrath J, Willems PHGM, Koopman WJH. Multiplexed high-content analysis of mitochondrial morphofunction using live-cell microscopy. Nat Protoc. 2016;11(9):1693–710.
Article
CAS
PubMed
Google Scholar
Yaothak J, Simpson JC, Heffernan LF, Tsai Y-S, Lin C-C. A semi-automated 2D segmentation and classification system to quantify and characterize morphological features of Golgi-derived membrane structures. Am J Biomed Eng. 2020. https://doi.org/10.5923/j.ajbe.20201002.02.
Article
Google Scholar
Öztürk Z, O’Kane CJ, Pérez-Moreno JJ. Axonal endoplasmic reticulum dynamics and its roles in neurodegeneration. Front Neurosci. 2020. https://doi.org/10.3389/fnins.2020.00048.
Article
PubMed
PubMed Central
Google Scholar
Wilkinson S. ER-phagy: shaping up and destressing the endoplasmic reticulum. FEBS J. 2019;286(14):2645–63.
CAS
PubMed
PubMed Central
Google Scholar
Westrate LM, Lee JE, Prinz WA, Voeltz GK. Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem. 2015;84:791–811.
Article
CAS
PubMed
Google Scholar
Goyal U, Blackstone C. Untangling the web: mechanisms underlying ER network formation. Biochim Biophys Acta - Mol Cell Res. 2013;1833(11):2492–8.
Article
CAS
Google Scholar
Peotter J, Kasberg W, Pustova I, Audhya A. COPII-mediated trafficking at the ER/ERGIC interface. Traffic. 2019;20(7):491–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fowler PC, Garcia-Pardo ME, Simpson JC, O’Sullivan NC. NeurodegenERation: the central role for ER contacts in neuronal function and axonopathy, lessons from hereditary spastic paraplegias and related diseases. Front Neurosci. 2019. https://doi.org/10.3389/fnins.2019.01051.
Article
PubMed
PubMed Central
Google Scholar
Terasaki M, Shemesh T, Kasthuri N, Klemm RW, Schalek R, Hayworth KJ, et al. Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell. 2013;154:285–96. https://doi.org/10.1016/j.cell.2013.06.031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terasaki M. Axonal endoplasmic reticulum is very narrow. J Cell Sci. 2018;131(4):jcs210450.
Article
PubMed
CAS
Google Scholar
Schroeder LK, Barentine AES, Merta H, Schweighofer S, Zhang Y, Baddeley D, et al. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. J Cell Biol. 2019;218(1):83–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Hu J. Shaping the endoplasmic reticulum into a social network. Trends Cell Biol. 2016;26(12):934–43.
Article
CAS
PubMed
Google Scholar
Farías GG, Fréal A, Tortosa E, Stucchi R, Pan X, Portegies S, et al. Feedback-driven mechanisms between microtubules and the endoplasmic reticulum instruct neuronal polarity. Neuron. 2019. https://doi.org/10.1016/j.neuron.2019.01.030.
Article
PubMed
Google Scholar
Shibata Y, Voeltz GK, Rapoport TA. Rough sheets and smooth tubules. Cell. 2006;126:435–9. https://doi.org/10.1016/j.cell.2006.07.019.
Article
CAS
PubMed
Google Scholar
Liu S, Pellman D. The coordination of nuclear envelope assembly and chromosome segregation in metazoans. Nucleus. 2020;11:35–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Puhka M, Joensuu M, Vihinen H, Belevich I, Jokitalo E. Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells. Mol Biol Cell. 2012;23:2424–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terasaki M, Chen LB, Fujiwara K. Microtubules and the endoplasmic reticulum are highly interdependent structures. Cell. 2007;103:1557–68.
Article
Google Scholar
Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell. 2006;124(3):573–86.
Article
CAS
PubMed
Google Scholar
Ulloa G, Hamati F, Dick A, Fitzgerald J, Mantell J, Verkade P, et al. Lipid species affect morphology of endoplasmic reticulum: a sea urchin oocyte model of reversible manipulation. J Lipid Res. 2019;60(11):1880–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romero-Brey I, Bartenschlager R. Endoplasmic reticulum: the favorite intracellular niche for viral replication and assembly. Viruses. 2016;8(6):160.
Article
PubMed Central
CAS
Google Scholar
Mohd Ropidi MI, Khazali AS, Nor Rashid N, Yusof R. Endoplasmic reticulum: a focal point of Zika virus infection. J Biomed Sci. 2020;27(1):1–13.
Article
Google Scholar
Jones JR, Kong L, Hanna MG, Hoffman B, Krencik R, Bradley R, et al. Mutations in GFAP disrupt the distribution and function of organelles in human astrocytes. Cell Rep. 2018;25(4):947–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mookherjee D, Majumder P, Mukherjee R, Chatterjee D, Kaul Z, Das S, et al. Cytosolic aggregates in presence of non-translocated proteins perturb endoplasmic reticulum structure and dynamics. Traffic. 2019;20(12):943–60.
Article
CAS
PubMed
Google Scholar
Sun S, Shi G, Han X, Francisco AB, Ji Y, Mendonça N, et al. Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival. Proc Natl Acad Sci USA. 2014;111(5):E582–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JE, Yang YM, Liang FX, Gough DJ, Levy DE, Sehgal PB. Nongenomic STAT5-dependent effects on Golgi apparatus and endoplasmic reticulum structure and function. Am J Physiol - Cell Physiol. 2012;302(5):C804–20.
Article
CAS
PubMed
Google Scholar
Wikstrom JD, Israeli T, Bachar-Wikstrom E, Swisa A, Ariav Y, Waiss M, et al. AMPK regulates ER morphology and function in stressed pancreatic β-cells via phosphorylation of DRP1. Mol Endocrinol. 2013;27(10):1706–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng P, Chen Q, Tian X, Qian N, Chai P, Liu B, et al. DNA damage triggers tubular endoplasmic reticulum extension to promote apoptosis by facilitating ER-mitochondria signaling. Cell Res. 2018;28(8):833–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bik E, Mielniczek N, Jarosz M, Denbigh J, Budzynska R, Baranska M, et al. Tunicamycin induced endoplasmic reticulum changes in endothelial cells investigated: In vitro by confocal Raman imaging. Analyst. 2019;144(22):6561–9.
Article
CAS
PubMed
Google Scholar
Joensuu M, Belevich I, Rämö O, Nevzorov I, Vihinen H, Puhka M, et al. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays. Mol Biol Cell. 2014;25(7):1111–26.
Article
PubMed
PubMed Central
Google Scholar
Haynes LW, Weller RO. The effects of cytochalasin B and colchicine on cell motility and ultrastructure in primary cultures of malignant gliomas. Acta Neuropathol. 1978;44(1):21–30.
Article
CAS
PubMed
Google Scholar
Feitosa WB, Lopes E, Visintin JA, Assumpção MEODA. Endoplasmic reticulum distribution during bovine oocyte activation is regulated by protein kinase C via actin filaments. J Cell Physiol. 2020;235(7–8):5823–34.
Article
CAS
PubMed
Google Scholar
Blackstone C. Converging cellular themes for the hereditary spastic paraplegias. Curr Opin Neurobiol. 2018;51:139–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shemesh T, Klemm RW, Romano FB, Wang S, Vaughan J, Zhuang X, et al. A model for the generation and interconversion of ER morphologies. Proc Natl Acad Sci U S A. 2014;11(49):E5243–51.
Article
CAS
Google Scholar
Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N, Prinz WA, et al. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell. 2009;138(3):549–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kerselidou D, Dohai BS, Nelson DR, Daakour S, de Cock N, Al Z, et al. Alternative glycosylation controls endoplasmic reticulum dynamics and tubular extension in mammalian cells. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abe8349.
Article
PubMed
PubMed Central
Google Scholar
Gaffke L, Pierzynowska K, Rintz E, Cyske Z, Giecewicz I, Węgrzyn G. Molecular sciences gene expression-related changes in morphologies of organelles and cellular component organization in mucopolysaccharidoses. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22052766.
Article
PubMed
PubMed Central
Google Scholar
Man H, Bian H, Zhang X, Wang C, Huang Z, Yan Y, et al. Hybrid labeling system for dSTORM imaging of endoplasmic reticulum for uncovering ultrastructural transformations under stress conditions. Biosen Bioelectron. 2021;189:113378.
Article
CAS
Google Scholar
Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M. Quantitative analysis of plant ER architecture and dynamics. Nat Commun. 2019;10:1–15.
Article
CAS
Google Scholar
English AR, Zurek N, Voeltz GK. Peripheral ER structure and function. Curr Opin Cell Biol. 2009;21(4):596–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, Zhang G, Lin S, Shi J, Zhang H, Hu J. Sec61β facilitates the maintenance of endoplasmic reticulum homeostasis by associating microtubules. Protein Cell. 2018;9:616–28. https://doi.org/10.1007/s13238-017-0492-5.
Article
CAS
PubMed
Google Scholar
Griffing LR. Networking in the endoplasmic reticulum. Biochem Soc Trans. 2010. https://doi.org/10.1042/BST0380747.
Article
PubMed
Google Scholar
Lee CA, Blackstone C. ER morphology and endo-lysosomal crosstalk: Functions and disease implications. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(1):158544.
Article
CAS
PubMed
Google Scholar
Costantini L, Snapp E. Probing endoplasmic reticulum dynamics using fluorescence imaging and photobleaching techniques. Curr Protoc Cell Biol. 2013. https://doi.org/10.1002/0471143030.cb2107s60.
Article
PubMed
PubMed Central
Google Scholar
Mehrle A, Rosenfelder H, Schupp I, del Val C, Arlt D, Hahne F, et al. The LIFEdb database in 2006. Nucleic Acids Res. 2006;34(suppl_1):D415–8.
Article
CAS
PubMed
Google Scholar
Simpson JC, Wellenreuther R, Poustka A, Pepperkok R, Wiemann S. Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep. 2000;1(3):287–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorente-Rodríguez A, Heidtman M, Barlowe C. Multicopy suppressor analysis of thermosensitive YIP1 alleles implicates GOT1 in transport from the ER. J Cell Sci. 2009;122(10):1540–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Y, Liu F, Ren Y, Wang Y, Liu X, Long W, et al. GOLGI TRANSPORT 1B regulates protein export from the endoplasmic reticulum in rice endosperm cells. Plant Cell. 2016;28(11):2850–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Cai J, Zheng Z, Polin L, Lin Z, Dandekar A, et al. A novel ER-microtubule-binding protein, ERLIN2, stabilizes Cyclin B1 and regulates cell cycle progression. Cell Discov. 2015;1(1):1–18.
Google Scholar
Zhao Y, Feng Z, Zou Y, Liu Y. The E3 ubiquitin ligase SYVN1 ubiquitinates atlastins to remodel the endoplasmic reticulum network. iScience. 2020. https://doi.org/10.1016/j.isci.2020.101494.
Article
PubMed
PubMed Central
Google Scholar
Ramírez AS, Kowal J, Locher KP. Cryo-electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B. Science. 2019. https://doi.org/10.1126/science.aaz3505.
Article
PubMed
PubMed Central
Google Scholar
Gao G, ZhuID C, Liu E, NabiID IR. Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules. PLoS Biol. 2019. https://doi.org/10.1371/journal.pbio.3000355.
Article
PubMed
PubMed Central
Google Scholar
Lu M, Van Tartwijk FW, Lin JQ, Nijenhuis W, Parutto P, Fantham M, et al. The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes. Sci Adv. 2020;6(51):eabc7209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fattouh N, Cazevieille C, Landmann F. Wolbachia endosymbionts subvert the endoplasmic reticulum to acquire host membranes without triggering ER stress. PLoS Negl Trop Dis. 2018. https://doi.org/10.1371/journal.pntd.0007218.
Article
Google Scholar
Borradaile NM, Han X, Harp JD, Gale SE, Ory DS, Schaffer JE. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res. 2006;47(12):2726–37.
Article
CAS
PubMed
Google Scholar
Peng G, Li L, Liu Y, Pu J, Zhang S, Yu J, et al. Oleate blocks palmitate-induced abnormal lipid distribution, endoplasmic reticulum expansion and stress, and insulin resistance in skeletal muscle. Endocrinology. 2011;152(6):2206–18.
Article
CAS
PubMed
Google Scholar
Hurt CM, Björk S, Ho VK, Gilsbach R, Hein L, Angelotti T. REEP1 and REEP2 proteins are preferentially expressed in neuronal and neuronal-like exocytotic tissues. Brain Res. 2014;1545:12–22. https://doi.org/10.1016/j.brainres.2013.12.008.
Article
CAS
PubMed
Google Scholar
Rizzo AM, Colombo I, Montorfano G, Zava S, Corsetto PA. Exogenous fatty acids modulate ER lipid composition and metabolism in breast cancer cells. Cells. 2021;10(1):175.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fehrenbacher KL, Davis D, Wu M, Boldogh I, Pon LA. Endoplasmic reticulum dynamics, inheritance, and cytoskeletal interactions in budding yeast. Mol Biol Cell. 2002;13(3):854–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamada T, Ueda H, Kawase T, Hara-Nishimura I. Microtubules contribute to tubule elongation and anchoring of endoplasmic reticulum, resulting in high network complexity in arabidopsis. Plant Physiol. 2014;166(4):1869–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Prodon F, Sardet C, Nishida H. Cortical and cytoplasmic flows driven by actin microfilaments polarize the cortical ER-mRNA domain along the a–v axis in ascidian oocytes. Dev Biol. 2008;313(2):682–99.
Article
CAS
PubMed
Google Scholar
Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK, Akutsu M, et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature. 2015;522(7556):354–8.
Article
CAS
PubMed
Google Scholar
Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR, Xu CS, et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science. 2016. https://doi.org/10.1126/science.aaf3928.
Article
PubMed
PubMed Central
Google Scholar