Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of affymetrix genechip probe level data. Nucleic Acid Res. 2003; 31:e15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008; 24:134–41.
Article
CAS
Google Scholar
Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. Rna-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008; 18(9):1509–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Feng Z, Wang X, Wang X, Zhang X. Degseq: an r package for identifying differentially expressed genes from rna-seq data. BMC Bioinformatics. 2009; 26(1):136–8.
Article
CAS
Google Scholar
Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in rna-seq: a matter of depth. Genome Res. 2003; 21(12):2213–23.
Article
CAS
Google Scholar
Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for high-throughput experiments. PNAS. 2010; 107(21):9546–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH, Chang CT, et al. A genome-wide association study identifies susceptibility variants for type 2 diabetes in han chinese. PLOS Genet. 2010; 6(2):e1000847.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li M, Atmaca-Sonmez P, Othman M, Branham KEH, Khanna R, Wade MS, et al. Cfh haplotypes without the y402h coding variant show strong association with susceptibility to age-related macular degeneration. Nat Genet. 2008; 38(9):1049–54.
Article
CAS
Google Scholar
Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. Rna-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008; 18:1509–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Auer PL, Doerge RW. A two-stage poisson model for testing rna-seq data. Stat Appl Genet Mol Biol. 2011; 10(1):1–26.
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11:106.
Article
CAS
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139–40.
Article
CAS
PubMed
Google Scholar
Hardcastle TJ, Kelly KA. bayseq: Empirical bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics. 2010; 11:422.
Article
PubMed
PubMed Central
Google Scholar
Zhou Y-H, Xia K, Wright FA. A powerful and flexible approach to the analysis of rna sequence count data. Bioinformatics. 2011; 27(19):2672–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCarthy DJ, Smyth GK. Testing significance relative to a fold-change threshold is a treat. Bioinformatics. 2009; 25(6):765–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng J, Meyer CA, Wang Q, Liu JS, Shirley LX, Zhang Y. Gfold: a generalized fold change for ranking differentially expressed genes from rna-seq data. Bioinformatics. 2012; 28(21):2782–8.
Article
CAS
PubMed
Google Scholar
Troyanskaya OG, Garber ME, Brown PO, Botstein D, Altman RB. Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics. 2002; 18:1454–61.
Article
CAS
PubMed
Google Scholar
Breitling R, Armengaud P, Amtmann A, Herzyk P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 2004; 573:83–92.
Article
CAS
PubMed
Google Scholar
Yamamoto H, Fujimori T, Sato H, Ishikawa G, Kami K, Ohashi Y. Statistical hypothesis testing of factor loading in principal component analysis and its application to metabolite set enrichment analysis. BMC Bioinformatics. 2014;15(51).
Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. PNAS. 2001; 98:5116–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37(1):1–13.
Article
CAS
Google Scholar
Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: Current approaches and outstanding challenges. PLOS Comput. Biol.2012;8(2).
Consortium TGO. Gene ontology: tool for the unification of biology. Nat Genet. 2000; 25:25–9.
Article
CAS
Google Scholar
Kanehisa M, Goto S. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28:27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, et al. Reactome knowledgebase of biological pathways and processes. Nucleic Acids Res. 2008; 37:619–22.
Article
CAS
Google Scholar
Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, Gilham F, et al. The metacyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases. Nucleic Acids Res. 2010; 38:473–9.
Article
CAS
Google Scholar
Nishimura D. Biocarta. Biotech Softw Internet Rep. 2001; 2:117–20.
Article
Google Scholar
Schriml LM, Arze C, Nadendla S, Chang YW, Mazaitis M, Felix V, et al. Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 2012; 40(D1):940–6.
Article
CAS
Google Scholar
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular signatures database (msigdb) 3.0. Bioinformatics. 2011; 27(12):1739–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hosack DA, Dennis GJ, Sherman BT, Lane HC, Lempicki PA. Identifying biological themes within lists of genes with ease. Genome Biol. 2003; 4:70.
Article
Google Scholar
Shahrour A, Diaz-Uriarte R, Dopazo J. Fatigo: a web tool for finding significant associations of gene ontology terms with groups of genes. Bioinformatics. 2004; 20:578–80.
Article
CAS
Google Scholar
Falcon S, Gentleman R. Using gostats to test gene lists for go term association. Bioinformatics. 2007; 23(2):257–8.
Article
CAS
PubMed
Google Scholar
Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. Genmapp, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet. 2002; 31:19–20.
Article
CAS
PubMed
Google Scholar
Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, et al. Gominer: a resource for bilogical interpretation of genomic and proteomic data. Genome Biol. 2003; 4:28.
Article
Google Scholar
Zhong S, Storch KF, Lipan O, Kao MC, Weitz CJ, Wong WH. Gosurfer: a graphical interactive tool for comparative analysis of large gene sets in gene ontology space. Appl Bioinformatics. 2004; 3(4):261–4.
Article
CAS
PubMed
Google Scholar
DAndrea D, Grassi L, Mazzapioda M, Tramontano A. Fidea: a server for the functional interpretation of differential expression analysis. Nucleic Acids Res. 2013; 41:84–8.
Article
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for rna-seq: accounting for selection bias. Genome Biol. 2010; 11(2):R14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glaab E, Baudot A, Krasnogor N, Schneider R, Valencia A. Enrichnet: network-based gene set enrichment analysis. Bioinformatics. 2012; 28(18):451–7.
Article
CAS
Google Scholar
Draghici S, Khatri P, Bhavsar P, Shah A, Krawetz SA, A TM. Onto-tools, the toolkit of the modern biologist: Onto-express, onto-compare, onto-design, and onto-translate. Nucleic Acids Res. 2003; 31:3775–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maere S, Heymans K, Kuiper M. Bingo: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005; 21:3448–9.
Article
CAS
PubMed
Google Scholar
Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37(1):1–13.
Article
CAS
Google Scholar
Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: Current approaches and outstanding challenges. PLoS Comput. Biol. 2012; 8(2):e1002375.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glass K, Girvan M. Annotation enrichment analysis: An altenative method for evluating the functional propertives of gene sets. Sci Rep.2014;4(4191).
Subramanian A, Tamayo P, Mootha V. K, Mukherjee S, Ebert B. L, Gillette M. A, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS. 2005; 102(43):15545–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tipney H, Hunter L. An introduction to effective use of enrichment analysis software. Hum Genomics. 2010; 4(3):202–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson SJ, Schopen M, Savage AG, Schulman JL, Arluk N. The mesh translation maintenance system: structure, interface design, and implementation. Stud Health Technol Inform. 2004; 107:67–9.
PubMed
Google Scholar
Nakazato T, Takinaka T, Mizuguchi H, Matsuda H, Bono H, Asogawa M. Biocompass: a novel functional inferance tool that utilizes mesh hierarchy to analyze groups of genes. In Silico Biol. 2007; 8:53–61.
Google Scholar
Nakazato T, Bono H, Matsuda H, Takagi T. Gendoo: functional profiling of gene and disease features using mesh vocabulary. Nucleic Acids Res. 2009; 37:166–9.
Article
CAS
Google Scholar
Sartor MA, Ade A, Wright Z, States D, Omenn GS, Athey B, et al. Metab2mesh: annotating compounds with medical subject headings. Bioinformatics. 2012; 28:1408–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jani SD, Argraves GL, Barth JL, Argraves WS. Genemesh: a web-based microarray analysis tool for relating differentially expressed genes to mesh terms. BMC Bioinformatics. 2010;11(166).
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approarch to multiple testing. J R Stat Soc B. 1995; 57:289–300.
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioformatics. BMC Genome Biol. 2004; 5(10):R80.
Article
Google Scholar
Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, Wong M, et al. The ucsc genome browser database: extensions and updates 2013. Nucleic Acids Res. 2012; 41:64–69.
Article
CAS
Google Scholar
Kawai J, Shinagawa A, Shibata K, Yoshino M, Itoh M, Ishii Y, et al. Functional annotation of a full-length mouse cdna collection. Nature. 2001; 409(6821):685–690.
Article
PubMed
Google Scholar
Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cdnas. Nature. 2002; 420(6915):563–573.
Article
PubMed
Google Scholar
Conesa A, Gotz S, Garcia-Gomez J. M, Terol J, Talon M, Robles M. Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005; 21(18):3674–76.
Article
CAS
PubMed
Google Scholar
Jones P, Binns D, Chang H, Fraser M, Li W, McAnulla C, et al. Interproscan 5: genome-scale protein function classification. Bioinformatics. 2014; 30(9):1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye Y, Choi J, Tang H. Rapsearch: a fast protein similarity search tool for short reads. BMC Bioinformatics. 2011;12(159).
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215(3):403–10.
Article
CAS
PubMed
Google Scholar
Quinlan JR. C4.5: Programs for machine learning. Burlington, Massachusetts, US: Morgan Kaufmann Publishers Inc.; 1993.
Google Scholar
Storey JD. The positive false discovery rate: A bayesian interpretation and the q-value. Ann Stat. 2003; 31:2013–35.
Article
Google Scholar
Storey JD, Tibshirani R. Statistical significance for genomewide studies. PNAS. 2003; 100:9440–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Efron B, Tibshirani R, Storey JD, Tusher V. Empirical bayes analysis of a microarray experiment. J Am Stat Assoc. 2001; 96:1151–60.
Article
Google Scholar
Efron B, Tibshirani R. Empirical bayes methods and false discovery rates for microarrays. Genetic Epidemiol. 2002; 23:70–86.
Article
Google Scholar
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the r/bioconductor package biomart. Nat Protocols. 2009; 4:1184–91.
Article
CAS
PubMed
Google Scholar
Durinck S, Moreau Y, Kasprzyk A, Davis S, Moor BD, Brazma A, et al. Biomart and bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005; 21:3439–40.
Article
CAS
PubMed
Google Scholar
Chujo Y, Fujii N, Okita N, Konishi T, Narita T, Yamada A, et al. Caloric restriction-associated remodeling of rat white adipose tissue: effects on the growth hormone/insulin-like growth factor-1 axis, sterol regulatory element binding protein-1, and macrophage infiltration. Age (Dordr). 2013; 35(4):1143–1156.
Article
CAS
Google Scholar
Konishi T. Three-parameter lognormal distribution uniquitosusly found in cdna microarray data and its application to parametric data treatment. BMC Bioinformatics. 2004;5.
Gallagher LA, Shendure J, Manoil C. Genome-scale identification of resistance functions in pseudomonas aeruginosa using tn-seq. mBio. 2011; 2:00315–10.
Article
CAS
Google Scholar
Aravind S, Pablo T, Vamsi KM, Sayan M, Benjamin LE, Michael AG, et al. A knowledge-based approach for interpreting genome-wide expression profiles. PNAS. 2005; 102(43):10.
Google Scholar
Irizarry RA, Wang C, Zhou Y, Speed TP. Gene set enrichment analysis made simple. Stat Methods Med Res. 2009; 18(6):565–75.
Article
PubMed
PubMed Central
Google Scholar
Efron B, Tibshirani R. On testing the significance of sets of genes. Annu Appl Stat. 2007; 1(1):107–129.
Article
Google Scholar