Chinchar V, Hyatt A, Miyazaki T, Williams T. Family Iridoviridae: poor viral relations no longer. In: Lesser known large dsDNA viruses: Springer; 2009. p. 123–70.
Nadugala MN, Jeewandara C, Malavige GN, Premaratne PH, Goonasekara CL. Natural antibody responses to the capsid protein in sera of dengue infected patients from Sri Lanka. PLoS One. 2017;12(6):e0178009.
Article
Google Scholar
Murali S, Wu MF, Guo IC, Chen SC, Yang HW, Chang CY. Molecular characterization and pathogenicity of a grouper iridovirus (GIV) isolated from yellow grouper, Epinephelus awoara (Temminck & Schlegel). J Fish Dis. 2002;25(2):91–100.
Article
CAS
Google Scholar
Do JW, Cha SJ, Kim JS, An EJ, Park MS, Kim JW, Kim YC, Park MA, Park JW. Sequence variation in the gene encoding the major capsid protein of Korean fish iridoviruses. Arch Virol. 2005;150(2):351–9.
Article
CAS
Google Scholar
Chinchar V, Hyatt A: Iridoviruses: general features. 2008.
Chapter
Google Scholar
Piégu B, Asgari S, Bideshi D, Federici BA, Bigot Y. Evolutionary relationships of iridoviruses and divergence of ascoviruses from invertebrate iridoviruses in the superfamily Megavirales. Mol Phylogenet Evol. 2015;84:44–52.
Article
Google Scholar
Lin H-Y, Liou C-J, Cheng Y-H, Hsu H-C, Yiu J-C, Chiou PP, Lai Y-S. Development and application of a monoclonal antibody against grouper iridovirus (GIV) major capsid protein. J Virol Methods. 2014;205:31–7.
Article
CAS
Google Scholar
Liu C-C, Chen C-M, Pai T-W, Chou H-Y, Hsu H-H. Exclusive genomic pathway analysis for groupers infected by different iridovirus. In: Complex, intelligent, and software intensive systems (CISIS), 2015 ninth international conference on: 2015: IEEE. p. 508–12.
Liu C-C, Ho L-P, Yang C-H, Kao T-Y, Chou H-Y, Pai T-W. Comparison of grouper infection with two different iridoviruses using transcriptome sequencing and multiple reference species selection. Fish Shellfish Immunol. 2017;71:264–74.
Article
CAS
Google Scholar
Zolla-Pazner S, Cardozo T. Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. Nat Rev Immunol. 2010;10(7):527–35.
Article
CAS
Google Scholar
Hilleman MR. Vaccines in historic evolution and perspective: a narrative of vaccine discoveries. J Hum Virol. 2000;3(2):63–76.
CAS
PubMed
Google Scholar
Forsström B, Axnäs BB, Rockberg J, Danielsson H, Bohlin A, Uhlen M. Dissecting antibodies with regards to linear and conformational epitopes. PLoS One. 2015;10(3):e0121673.
Article
Google Scholar
Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform. 2015;53:405–14.
Article
Google Scholar
Greenbaum JA, Andersen PH, Blythe M, Bui HH, Cachau RE, Crowe J, Davies M, Kolaskar A, Lund O, Morrison S. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit. 2007;20(2):75–82.
Article
CAS
Google Scholar
Singh H, Ansari HR, Raghava GP. Improved method for linear B-cell epitope prediction using antigen’s primary sequence. PLoS One. 2013;8(5):e62216.
Article
CAS
Google Scholar
Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017;45(W1):W24–9.
Article
CAS
Google Scholar
EL-Manzalawy Y, Dobbs D, Honavar V. Predicting linear B-cell epitopes using string kernels. J Mol Recognit. 2008;21(4):243–55.
Article
CAS
Google Scholar
Saha S, Raghava G. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins. 2006;65(1):40–8.
Article
CAS
Google Scholar
Wang H-W, Lin Y-C, Pai T-W, Chang H-T: Prediction of B-cell linear epitopes with a combination of support vector machine classification and amino acid propensity identification. Biomed Res Int 2011, 2011.( http://140.121.197.182/LEPS/).
Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 2012;40(Database issue):D130–5.
Article
CAS
Google Scholar
UniProt C: UniProt: a hub for protein information. Nucleic Acids Res 2015, 43(Database issue):D204–D212.
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845–58.
Article
CAS
Google Scholar
Notredame C, Higgins DG, Heringa J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302(1):205–17.
Article
CAS
Google Scholar
Kringelum JV, Nielsen M, Padkjær SB, Lund O. Structural analysis of B-cell epitopes in antibody: protein complexes. Mol Immunol. 2013;53(1–2):24–34.
Article
CAS
Google Scholar
Kemeny D, Sarmay G. A practical guide to ELISA: D. M. Kemeny. Oxford: Pergamon Press; 1992.
Google Scholar
Nakajima K, Maeno Y, Honda A, Yokoyama K, Tooriyama T, Manabe S. Effectiveness of a vaccine against red sea bream iridoviral disease in a field trial test. Dis Aquat Org. 1999 Apr 15;36(1):73–5.
Article
CAS
Google Scholar
Caipang CM, Hirono I, Aoki T. Immunogenicity, retention and protective effects of the protein derivatives of formalin-inactivated red seabream iridovirus (RSIV) vaccine in red seabream. Pagrus major. Fish Shellfish Immunol. 2006;20(4):597–609.
Article
CAS
Google Scholar
Liu W, Xu J, Ma J, LaPatra SE, Meng Y, Fan Y, Zhou Y, Yang X, Zeng L. Immunological responses and protection in Chinese giant salamander Andrias davidianus immunized with inactivated iridovirus. Vet Microbiol. 2014;174(3–4):382–90.
Article
CAS
Google Scholar
Ou-yang Z, Wang P, Huang X, Cai J, Huang Y, Wei S, Ji H, Wei J, Zhou Y, Qin Q. Immunogenicity and protective effects of inactivated Singapore grouper iridovirus (SGIV) vaccines in orange-spotted grouper. Epinephelus coioides. Dev Comp Immunol. 2012;38(2):254–61.
Article
CAS
Google Scholar
Shimmoto H, Kawai K, Ikawa T, Oshima S. Protection of red sea bream Pagrus major against red sea bream iridovirus infection by vaccination with a recombinant viral protein. Microbiol Immunol. 2010;54(3):135–42.
Article
CAS
Google Scholar
Liu HI, Chiou PP, Gong HY, Chou HY. Cloning of the major capsid protein (MCP) of grouper Iridovirus of Taiwan (TGIV) and preliminary evaluation of a recombinant MCP vaccine against TGIV. Int J Mol Sci. 2015;16(12):28647–56.
Article
CAS
Google Scholar
Fu X, Li N, Lai Y, Liu L, Lin Q, Shi C, Huang Z, Wu S. Protective immunity against iridovirus disease in mandarin fish, induced by recombinant major capsid protein of infectious spleen and kidney necrosis virus. Fish Shellfish Immunol. 2012;33(4):880–5.
Article
CAS
Google Scholar
Zhou Y, Fan Y, LaPatra SE, Ma J, Xu J, Meng Y, Jiang N, Zeng L. Protective immunity of a Pichia pastoris expressed recombinant iridovirus major capsid protein in the Chinese giant salamander, Andrias davidianus. Vaccine. 2015;33(42):5662–9.
Article
CAS
Google Scholar
Zhang M, Hu YH, Xiao ZZ, Sun Y, Sun L. Construction and analysis of experimental DNA vaccines against megalocytivirus. Fish Shellfish Immunol. 2012;33(5):1192–8.
Article
CAS
Google Scholar
Jung MH, Nikapitiya C, Jung SJ. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus). Vaccine. 2018;36(6):802–10.
Article
CAS
Google Scholar
Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng. 2001;14(8):529–32.
Article
CAS
Google Scholar
Shamriz S, Ofoghi H, Moazami N. Effect of linker length and residues on the structure and stability of a fusion protein with malaria vaccine application. Comput Biol Med. 2016;76:24–9.
Article
CAS
Google Scholar
Klein JS, Jiang S, Galimidi RP, Keeffe JR, Bjorkman PJ. Design and characterization of structured protein linkers with differing flexibilities. Protein Eng Des Sel. 2014;27(10):325–30.
Article
CAS
Google Scholar
Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725.
Article
CAS
Google Scholar
Hou J, Liu Y, Hsi J, Wang H, Tao R, Shao Y. Cholera toxin B subunit acts as a potent systemic adjuvant for HIV-1 DNA vaccination intramuscularly in mice. Hum Vaccin Immunother. 2014;10(5):1274–83.
Article
CAS
Google Scholar
Wang C, Zhu W, Wang B-Z. Dual-linker gold nanoparticles as adjuvanting carriers for multivalent display of recombinant influenza hemagglutinin trimers and flagellin improve the immunological responses in vivo and in vitro. Int J Nanomedicine. 2017;12:4747.
Article
CAS
Google Scholar