Heller MJ. Dna microarray technology: devices, systems, and applications. Annu Rev Biomed Eng. 2002;4(1):129–53.
Article
CAS
PubMed
Google Scholar
Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487–91.
Article
CAS
PubMed
Google Scholar
Sanger F, Nicklen S, Coulson AR. Dna sequencing with chain-terminating inhibitors. Proc Natl Acad Sci. 1977;74(12):5463–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bier FF, von Nickisch-Rosenegk M, Ehrentreich-Foerster E, Reiss E, Henkel J, Strehlow R, Andresen D. DNA microarrays. In: Renneberg R, Lisdat F, editors. Biosensing for the 21st century. Berlin: Springer; 2007. p. 433–53.
Chapter
Google Scholar
Guzzi PH, Agapito G, Di Martino MT, Arbitrio M, Tassone P, Tagliaferri P, Cannataro M. DMET-analyzer: automatic analysis of affymetrix DMET data. BMC Bioinform. 2012;13(1):1–10.
Article
Google Scholar
Agapito G, Cannataro M, Guzzi PH, Marozzo F, Talia D, Trunfio P. Cloud4snp: distributed analysis of SNP microarray data on the cloud. In: Proceedings of the international conference on bioinformatics, computational biology and biomedical informatics; 2013, p. 468–75.
Guzzi PH, Agapito G, Cannataro M. coreSNP: parallel processing of microarray data. IEEE Trans Comput. 2013;63(12):2961–74.
Article
Google Scholar
Agapito G, Milano M, Guzzi PH, Cannataro M. Extracting cross-ontology weighted association rules from gene ontology annotations. IEEE/ACM Trans Comput Biol Bioinf. 2015;13(2):197–208.
Article
Google Scholar
Agapito G, Guzzi PH, Cannataro M. DMET-miner: discovery of association rules from pharmacogenomic data. J Biomed Inform. 2015;56:273–83.
Article
PubMed
Google Scholar
Agapito G, Guzzi PH, Cannataro M. Parallel and distributed association rule mining in life science: a novel parallel algorithm to mine genomics data. Inf Sci. 2021;575:747–61.
Article
Google Scholar
Agapito G, Guzzi PH, Cannataro M. Parallel extraction of association rules from genomics data. Appl Math Comput. 2019;350:434–46.
Google Scholar
Milano M. Using gene ontology to annotate and prioritize microarray data. Berlin: Springer; 2022. p. 273–87.
Google Scholar
Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47(260):583–621.
Article
Google Scholar
Bompais M, Ameur H, Pastor D, Dupraz E. The p-value as a new similarity function for spectral clustering in sensor networks. In: 2018 IEEE statistical signal processing workshop (SSP). IEEE; 2018. p. 95–9.
Bailey TL, Gribskov M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics (Oxford, England). 1998;14(1):48–54.
Article
CAS
Google Scholar
Kotlyar M, Pastrello C, Malik Z, Jurisica I. Iid 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species. Nucleic Acids Res. 2019;47(D1):581–9.
Article
Google Scholar
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 2012;41(D1):991–5.
Article
Google Scholar
Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW. Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci. 2004;101(7):2173–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Walker DG, Caselli RJ, Kukull WA, McKeel D, Morris JC, et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genom. 2007;28(3):311–22.
Article
CAS
Google Scholar
Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci. 2008;105(11):4441–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Readhead B, Haure-Mirande J-V, Funk CC, Richards MA, Shannon P, Haroutunian V, Sano M, Liang WS, Beckmann ND, Price ND, et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron. 2018;99(1):64–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Ramsey K, Caselli RJ, Kukull WA, McKeel D, Morris JC, et al. Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data set. Physiol Genom. 2008;33(2):240–56.
Article
CAS
Google Scholar
Nunez-Iglesias J, Liu C-C, Morgan TE, Finch CE, Zhou XJ. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS ONE. 2010;5(2):1–9. https://doi.org/10.1371/journal.pone.0008898.
Article
CAS
Google Scholar
Stirewalt DL, Meshinchi S, Kopecky KJ, Fan W, Pogosova-Agadjanyan EL, Engel JH, Cronk MR, Dorcy KS, McQuary AR, Hockenbery D, et al. Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosom Cancer. 2008;47(1):8–20.
Article
CAS
PubMed
Google Scholar
Le Dieu R, Taussig DC, Ramsay AG, Mitter R, Miraki-Moud F, Fatah R, Lee AM, Lister TA, Gribben JG. Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood J Am Soc Hematol. 2009;114(18):3909–16.
Google Scholar
Affer M, Dao S, Liu C, Olshen A, Mo Q, Viale A, Lambek C, Marr T, Clarkson B. Gene expression differences between enriched normal and chronic myelogenous leukemia quiescent stem/progenitor cells and correlations with biological abnormalities. J Oncol. 2011;2011:798592.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abraham SA, Hopcroft LE, Carrick E, Drotar ME, Dunn K, Williamson AJ, Korfi K, Baquero P, Park LE, Scott MT, et al. Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature. 2016;534(7607):341–6.
Article
PubMed
PubMed Central
Google Scholar
Agapito G, Cannataro M. Using biopax-parser (BIP) to enrich lists of genes or proteins with pathway data. BMC Bioinform. 2021;22(13):1–35.
Google Scholar
Agapito G, Cannataro M. Using biopax-parser (BIP) to annotate lists of biological entities with pathway data. In: International conference on conceptual modeling. Springer; 2020. p. 92–101.
Agapito G, Pastrello C, Guzzi PH, Jurisica I, Cannataro M. Biopax-parser: parsing and enrichment analysis of biopax pathways. Bioinformatics. 2020;36(15):4377–8.
Article
CAS
PubMed
Google Scholar
Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath G, Wu G, Matthews L, et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 2005;33(suppl–1):428–32.
Google Scholar
Girden ER. ANOVA: repeated measures, vol. 84. Thousand Oaks: Sage; 1992.
Book
Google Scholar
Milano M, Zucco C, Cannataro M. Covid-19 community temporal visualizer: a new methodology for the network-based analysis and visualization of covid-19 data. Netw Model Anal Health Inform Bioinform. 2021;10(1):1–38.
Article
Google Scholar
Agapito G, Milano M, Cannataro M. A new parallel methodology for the network analysis of covid-19 data. In: Euro-Par 2020: parallel processing workshops. Nature Publishing Group; 2020. p. 333.
Wilcoxon F. Individual comparisons by ranking methods. Biom Bull. 1945;1(6):80–3.
Article
Google Scholar
Gehan EA. A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika. 1965;52(1–2):203–24.
Article
CAS
PubMed
Google Scholar
Carey A, Eide CA, Newell L, Traer E, Medeiros BC, Pollyea DA, Deininger MW, Collins RH, Tyner JW, Druker BJ, et al. Identification of interleukin-1 by functional screening as a key mediator of cellular expansion and disease progression in acute myeloid leukemia. Cell Rep. 2017;18(13):3204–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nadir Y, Katz T, Sarig G, Hoffman R, Oliven A, Rowe JM, Brenner B. Hemostatic balance on the surface of leukemic cells: the role of tissue factor and urokinase plasminogen activator receptor. Haematologica. 2005;90(11):1549–56.
CAS
PubMed
Google Scholar
Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI, Armstrong SA. The Wnt/\(\beta\)-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327(5973):1650–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Y, Boyd K, Xu W, Ma J, Jackson CW, Fu A, Shillingford JM, Robinson GW, Hennighausen L, Hitzler JK, et al. Acute myeloid leukemia-associated mkl1 (mrtf-a) is a key regulator of mammary gland function. Mol Cell Biol. 2006;26(15):5809–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camacho V, McClearn V, Patel S, Welner RS. Regulation of normal and leukemic stem cells through cytokine signaling and the microenvironment. Int J Hematol. 2017;105(5):566–77.
Article
CAS
PubMed
Google Scholar
Picot T, Kesr S, Wu Y, Aanei CM, Flandrin-Gresta P, Tondeur S, Tavernier E, Wattel E, Guyotat D, Campos L. Potential role of oct4 in leukemogenesis. Stem Cells Dev. 2017;26(22):1637–47.
Article
CAS
PubMed
Google Scholar
Almeida LYd, Rego EM. Is the EGFR pathway relevant for the pathogenesis but not for treatment of acute myeloid leukemia? J Cancer Metastasis Treat. 2021;7:57.
Google Scholar
Rodrigues ACBdC, Costa RG, Silva SL, Dias IR, Dias RB, Bezerra DP. Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol/Hematol. 2021;160: 103277.
Article
Google Scholar
Yang J, Chai L, Fowles TC, Alipio Z, Xu D, Fink LM, Ward DC, Ma Y. Genome-wide analysis reveals sall4 to be a major regulator of pluripotency in murine-embryonic stem cells. Proc Natl Acad Sci. 2008;105(50):19756–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grønningsæter IS, Reikvam H, Aasebø E, Bartaula-Brevik S, Tvedt TH, Bruserud Ø, Hatfield KJ. Targeting cellular metabolism in acute myeloid leukemia and the role of patient heterogeneity. Cells. 2020;9(5):1155.
Article
PubMed Central
Google Scholar
Jones CL, Stevens BM, D’Alessandro A, Reisz JA, Culp-Hill R, Nemkov T, Pei S, Khan N, Adane B, Ye H, et al. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell. 2018;34(5):724–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schnerch D, Yalcintepe J, Schmidts A, Becker H, Follo M, Engelhardt M, Wäsch R. Cell cycle control in acute myeloid leukemia. Am J Cancer Res. 2012;2(5):508.
PubMed
PubMed Central
Google Scholar
Chae H-D, Sakamoto K. Replication factor c3 is a direct target of CREB, promotes g1/s transition of acute myeloid leukemia cells, and increases hematopoietic stem/progenitor cell self-renewal. Blood. 2013;122(21):3754.
Article
Google Scholar
Enjeti AK, D’Crus A, Melville K, Verrills NM, Rowlings P. A systematic evaluation of the safety and toxicity of fingolimod for its potential use in the treatment of acute myeloid leukaemia. Anticancer Drugs. 2016;27(6):560.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci. 1996;93(8):3444–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang Y-L, Zhang C-G, Liu H, Zhou Y, Wang Y-P, Li Y, Han Y-J, Wang C-L. Ginsenoside rg1 inhibits cell proliferation and induces markers of cell senescence in CD34+ CD38- leukemia stem cells derived from kg1\(\alpha\) acute myeloid leukemia cells by activating the sirtuin 1 (sirt1)/tuberous sclerosis complex 2 (tsc2) signaling pathway. Med Sci Monit Int Med J Exp Clin Res. 2020;26:918207–1.
Google Scholar
Ramesh M, Gopinath P, Govindaraju T. Role of post-translational modifications in Alzheimer’s disease. ChemBioChem. 2020;21(8):1052–79.
Article
CAS
PubMed
Google Scholar
Kaddurah-Daouk R, Zhu H, Sharma S, Bogdanov M, Rozen S, Matson W, Oki N, Motsinger-Reif A, Churchill E, Lei Z, et al. Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl Psychiatry. 2013;3(4):244–244.
Article
Google Scholar
Zachary I. Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals. 2005;14(5):207–21.
Article
CAS
PubMed
Google Scholar
Chen X-M, Feng M-J, Shen C-J, He B, Du X-F, Yu Y-B, Liu J, Chu H-M. A novel approach to select differential pathways associated with hypertrophic cardiomyopathy based on gene co-expression analysis. Mol Med Rep. 2017;16(1):773–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magalhães KG, Luna-Gomes T, Mesquita-Santos F, Corrêa R, Assuncao LS, Atella GC, Weller PF, Bandeira-Melo C, Bozza PT. Schistosomal lipids activate human eosinophils via toll-like receptor 2 and pgd2 receptors: 15-lo role in cytokine secretion. Front Immunol. 2019;9:3161.
Article
PubMed
PubMed Central
Google Scholar
Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci. 2002;202(1–2):13–23.
Article
CAS
PubMed
Google Scholar
Devi L, Ohno M. Perk mediates \(\text{ eif }2\alpha\) phosphorylation responsible for bace1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2014;35(10):2272–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizuno S, Iijima R, Ogishima S, Kikuchi M, Matsuoka Y, Ghosh S, Miyamoto T, Miyashita A, Kuwano R, Tanaka H. Alzpathway: a comprehensive map of signaling pathways of Alzheimer’s disease. BMC Syst Biol. 2012;6(1):1–10.
Article
Google Scholar
Hoozemans J, Veerhuis R, Van Haastert E, Rozemuller J, Baas F, Eikelenboom P, Scheper W. The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol. 2005;110(2):165–72.
Article
CAS
PubMed
Google Scholar