Agapito G, Guzzi PH, Cannataro M. DMET-Miner: Efficient discovery of association rules from pharmacogenomic data. J Biomed Inform. 2015;56:273–83.
Article
PubMed
Google Scholar
Guzzi PH, Agapito G, Cannataro M. coresnp: Parallel processing of microarray data. IEEE Trans Comput. 2013;63(12):2961–74.
Article
Google Scholar
Agapito G, Guzzi PH, Cannataro M. Parallel extraction of association rules from genomics data. Appl Math Comput. 2019;350:434–46.
Google Scholar
Agapito G, Guzzi PH, Cannataro M. An efficient and scalable SPARK preprocessing methodology for Genome Wide Association Studies. In: 2020 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP); 2020. p. 369–375.
Agapito G, Milano M, Guzzi PH, Cannataro M. Extracting cross-ontology weighted association rules from gene ontology annotations. IEEE/ACM Trans Comput Biol Bioinf. 2015;13(2):197–208.
Article
Google Scholar
Agapito G, Cannataro M, Guzzi PH, Milano M. Using GO-WAR for mining cross-ontology weighted association rules. Comput Methods Programs Biomed. 2015;120(2):113–22.
Article
PubMed
Google Scholar
Milano M, Milenković T, Cannataro M, Guzzi PH. L-HetnetAligner: a novel algorithm for Local Alignment of Heterogeneous Biological networks. Sci Rep. 2020;10(1):1–20.
Article
CAS
Google Scholar
Calimeri F, Cauteruccio F, Marzullo A, Stamile C, Terracina G. Mixing logic programming and neural networks to support neurological disorders analysis. In: International joint conference on rules and reasoning. Springer; 2018. p. 33–47.
Ogata H, Goto S, Fujibuchi W, Kanehisa M. Computation with the KEGG pathway database. Biosystems. 1998;47(1–2):119–28.
Article
CAS
PubMed
Google Scholar
Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, et al. The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 2007;36(suppl-1):D623–31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res. 2005;33(suppl-1):D284–8.
CAS
PubMed
Google Scholar
Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur Ö, Anwar N, et al. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 2010;39(suppl-1):D685–90.
PubMed
PubMed Central
Google Scholar
Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009;37(Database issue):D674–9.
Article
CAS
PubMed
Google Scholar
Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 2005;33(suppl-1):D428–32.
CAS
PubMed
Google Scholar
Licata L, Lo Surdo P, Iannuccelli M, Palma A, Micarelli E, Perfetto L, et al. SIGNOR 2.0, the SIGnaling network open resource 2.0: 2019 update. Nucleic acids research. 2020;48(D1):D504–D510.
Pico AR, Kelder T, Van Iersel MP, Hanspers K, Conklin BR, Evelo C. WikiPathways: pathway editing for the people. PLoS Biol. 2008;6(7):e184.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rahmati S, Abovsky M, Pastrello C, Jurisica I. pathDIP: an annotated resource for known and predicted human gene-pathway associations and pathway enrichment analysis. Nucleic Acids Res. 2016;45(D1):D419–26. https://doi.org/10.1093/nar/gkw1082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agapito G, Pastrello C, Guzzi PH, Jurisica I, Cannataro M. BioPAX-Parser: parsing and enrichment analysis of BioPAX pathways. Bioinformatics. 2020;36(15):4377–8. https://doi.org/10.1093/bioinformatics/btaa529.
Gu Z, Wang J. CePa: an R package for finding significant pathways weighted by multiple network centralities. Bioinformatics. 2013;29(5):658–60.
Article
CAS
PubMed
Google Scholar
Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, et al. A novel signaling pathway impact analysis. Bioinformatics (Oxford, England). 2009;25(1):75–82.
Article
CAS
Google Scholar
Nørlund NE. Hypergeometric functions. Acta Mathematica. 1955;94(1):289–349.
Article
Google Scholar
Upton GJ. Fisher’s exact test. J R Stat Soc Ser A (Stat Soc). 1992;155(3):395–402.
Article
Google Scholar
Friedkin NE. Theoretical foundations for centrality measures. Am J Sociol. 1991;96(6):1478–504.
Article
Google Scholar
Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, et al. Using graph theory to analyze biological networks. BioData Min. 2011;4(1):1–27.
Article
Google Scholar
Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, et al. The BioPAX community standard for pathway data sharing. Nat Biotechnol. 2010;28(9):935.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mubeen S, Hoyt CT, Gemünd A, Hofmann-Apitius M, Fröhlich H, Domingo-Fernández D. The impact of pathway database choice on statistical enrichment analysis and predictive modeling. Front Genet. 2019;10:1203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wadi L, Meyer M, Weiser J, Stein LD, Reimand J. Impact of outdated gene annotations on pathway enrichment analysis. Nat Methods. 2016;13(9):705–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le NQK, Yapp EKY, Nagasundaram N, Chua MCH, Yeh HY. Computational identification of vesicular transport proteins from sequences using deep gated recurrent units architecture. Comput Struct Biotechnol J. 2019;17:1245–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le NQK, Yapp EKY, Yeh HY. ET-GRU: using multi-layer gated recurrent units to identify electron transport proteins. BMC Bioinform. 2019;20(1):1–12.
Article
CAS
Google Scholar
Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol. 2012;8(2):e1002375.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers EJ, Berk R, et al. Redefine statistical significance. Nat Human Behav. 2018;2(1):6–10. https://doi.org/10.1038/s41562-017-0189-z.
Article
Google Scholar
Agapito G, Cannataro M. Using BioPAX-Parser (BiP) to annotate lists of biological entities with pathway data. In: International conference on conceptual modeling. Springer; 2020. p. 92–101.
The BioPAX Parser Framework. https://gitlab.com/giuseppeagapito/bip. Accessed 11 Feb 2021.
The Centrality-based Pathway Enrichment (CePa) Framework. Available from: http://cran.r-project.org/web/packages/CePa/. Accessed 11 Feb 2021.
The pathDIP Framework. http://ophid.utoronto.ca/pathDIP. Accessed 11 Feb 2021.
The Signaling Pathway Impact Analysis (SPIA) Framework. Available from: http://bioconductor.org/packages/SPIA/. Accessed 11 Feb 2021.
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28(5):495–501. https://doi.org/10.1038/nbt.1630.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191–8. https://doi.org/10.1093/nar/gkz369.
Article
CAS
PubMed
PubMed Central
Google Scholar
The TCGA Colorectal Cancer (COAD) data set. Available from: https://portal.gdc.cancer.gov/projects/TCGA-COAD. Accessed 11 Feb 2021.
The GEO Colorectal Cancer (GSE41011) data set. Available from: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41011. Accessed 11 Feb 2021.
The TCGA Thyroid Cancer (THCA) data set. Available from: https://portal.gdc.cancer.gov/projects/TCGA-THCA. Accessed 11 Feb 2021.
The GEO Thyroid Cancer (GSE65144) data set. Available from: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65144. Accessed 11 Feb 2021.
The TCGA Endometrial Cancer (UCEC) data set. Available from: https://portal.gdc.cancer.gov/projects/TCGA-UCEC. Accessed 11 Feb 2021.
The GEO Endometrial Cancer (GSE63678) data set. Available from: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63678. Accessed 11 Feb 2021.
The Reactome Pathway Database. Available from: https://reactome.org/download-data. Accessed 11 Feb 2021.
The Kyoto Encyclopedia of Genes and Genomes Pathway Database. Available from: https://www.kegg.jp. Accessed 11 Feb 2021.
The cBioPortal for Cancer Genomics. Available from: https://www.cbioportal.org/. Accessed 11 Feb 2021.
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1–pl1.
Article
PubMed
PubMed Central
CAS
Google Scholar
The GEO2R Portal. Available from: https://www.ncbi.nlm.nih.gov/geo/geo2r/. Accessed 11 Feb 2021.
Meng F, Dai E, Yu X, Zhang Y, Chen X, Liu X, et al. Constructing and characterizing a bioactive small molecule and microRNA association network for Alzheimer’s disease. J R Soc Interface. 2014;11(92):20131057.
Article
PubMed
PubMed Central
CAS
Google Scholar
La Vecchia S, Sebastián C. Metabolic pathways regulating colorectal cancer initiation and progression. In: Seminars in cell and developmental biology. vol. 98. Elsevier; 2020. p. 63–70.
Andersen CL, Christensen LL, Thorsen K, Schepeler T, Sørensen FB, Verspaget HW, et al. Dysregulation of the transcription factors SOX4, CBFB and SMARCC1 correlates with outcome of colorectal cancer. Br J Cancer. 2009;100(3):511–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slattery ML, Mullany LE, Sakoda LC, Wolff RK, Samowitz WS, Herrick JS. The MAPK-signaling pathway in colorectal cancer: dysregulated genes and their association with micrornas. Cancer Inform. 2018;17:1176935118766522.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Lu R, Fu X, Dan Z, Zhang YG, Chang X, et al. Novel regulatory roles of Wnt1 in infection-associated colorectal cancer. Neoplasia. 2018;20(5):499–509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang QR, Pan XB. Prognostic lncRNAs, miRNAs, and mRNAs form a competing endogenous RNA network in colon cancer. Front Oncol. 2019;9:712.
Article
PubMed
PubMed Central
Google Scholar
Harkins L, Volk AL, Samanta M, Mikolaenko I, Britt WJ, Bland KI, et al. Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet. 2002;360(9345):1557–63.
Article
CAS
PubMed
Google Scholar
Vicente CM, da Silva DA, Sartorio PV, Silva TD, Saad SS, Nader HB, et al. Heparan sulfate proteoglycans in human colorectal cancer. Anal Cell Pathol. 2018. https://doi.org/10.1155/2018/8389595.
Fernandes Q, Gupta I, Vranic S, Al Moustafa AE. Human papillomaviruses and Epstein-Barr virus interactions in colorectal cancer: a brief review. Pathogens. 2020;9(4):300.
Article
CAS
PubMed Central
Google Scholar
Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014;34(2):280–300. https://doi.org/10.1002/med.21288.
Article
CAS
PubMed
Google Scholar
Chaffer CL, Dopheide B, Savagner P, Thompson EW, Williams ED. Aberrant fibroblast growth factor receptor signaling in bladder and other cancers. Differentiation. 2007;75(9):831–42. https://doi.org/10.1111/j.1432-0436.2007.00210.x.
Article
CAS
PubMed
Google Scholar
Satoh K, Yachida S, Sugimoto M, Oshima M, Nakagawa T, Akamoto S, et al. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc Nat Acad Sci. 2017;114(37):E7697–706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim IY, Kwon HY, Park KH, Kim DS. Anaphase-promoting complex 7 is a prognostic factor in human colorectal cancer. Ann Coloproctol. 2017;33(4):139.
Article
PubMed
PubMed Central
Google Scholar
Tsaniras SC, Kanellakis N, Symeonidou I, Nikolopoulou P, Lygerou Z, Taraviras S. Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked world? In: Seminars in cell and developmental biology. vol. 30. Elsevier; 2014. p. 174–180.
Bernal A, Tusell L. Telomeres: implications for cancer development. Int J Mol Sci. 2018;19(1):294.
Article
PubMed Central
CAS
Google Scholar
Tong X, Zhao F, Mancuso A, Gruber JJ, Thompson CB. The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation. Proc Nat Acad Sci. 2009;106(51):21660–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Esteban-Jurado C, Franch-Expósito S, Muñoz J, Ocaña T, Carballal S, López-Cerón M, et al. The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer. Eur J Human Genet. 2016;24(10):1501–5. https://doi.org/10.1038/ejhg.2016.44.
Fernández-Briera A, García-Parceiro I, Cuevas E, Gil-Martín E. Effect of human colorectal carcinogenesis on the neural cell adhesion molecule expression and polysialylation. Oncology. 2010;78(3–4):196–204.
Article
PubMed
CAS
Google Scholar
Park BG, Kim YJ, Min JH, Cheong TC, Nam SH, Cho NH, et al. Assessment of cellular uptake efficiency according to multiple inhibitors of Fe 3 O 4-Au core-shell nanoparticles: possibility to control specific endocytosis in colorectal cancer cells. Nanoscale Res Lett. 2020;15(1):1–10.
Article
CAS
Google Scholar
Sun J, Cheng X, Pan S, Wang L, Dou W, Liu J, et al. Dichloroacetate attenuates the stemness of colorectal cancer cells via trigerring ferroptosis through sequestering iron in lysosomes. Environ Toxicol. 2020;36(4):520–9. https://doi.org/10.1002/tox.23057.
Grady W, Parkin R, Mitchell P, Lee J, Kim Y, Tsuchiya K, et al. Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene. 2008;27(27):3880–8.
Article
CAS
PubMed
Google Scholar
Agarwal E, Brattain MG, Chowdhury S. Cell survival and metastasis regulation by Akt signaling in colorectal cancer. Cell Signal. 2013;25(8):1711–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mita AC, Mita MM, Nawrocki ST, Giles FJ. Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res. 2008;14(16):5000–5.
Article
CAS
PubMed
Google Scholar
Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci. 1992;89(16):7491–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang HP, Gonzalez Bosquet J, Li Q, Platz EA, Brinton LA, Sherman ME, et al. Common genetic variation in the sex hormone metabolic pathway and endometrial cancer risk: pathway-based evaluation of candidate genes. Carcinogenesis. 2010;31(5):827–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu A, Zhang D, Yang X, Song Y. Estrogen receptor alpha activates MAPK signaling pathway to promote the development of endometrial cancer. J Cell Biochem. 2019;120(10):17593–601.
Article
CAS
PubMed
Google Scholar
Ouyang D, Li R, Li Y, Zhu X. A 7-lncRNA signature predict prognosis of Uterine corpus endometrial carcinoma. J Cell Biochem. 2019;120(10):18465–77.
Article
CAS
PubMed
Google Scholar
Wu X, Miao J, Jiang J, Liu F. Analysis of methylation profiling data of hyperplasia and primary and metastatic endometrial cancers. Eur J Obstetr Gynecol Reprod Biol. 2017;217:161–6.
Article
CAS
Google Scholar
Wang D, Wang D, Wang N, Long Z, Ren X. Long non-coding RNA BANCR promotes endometrial cancer cell proliferation and invasion by regulating MMP2 and MMP1 via ERK/MAPK signaling pathway. Cell Physiol Biochem. 2016;40(3–4):644–56.
Article
CAS
PubMed
Google Scholar
Yang Y, Liu PY, Bao W, Chen SJ, Wu FS, Zhu PY. Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer. 2020;20(1):28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kodati V, Govindan S, Movva S, Ponnala S, Hasan Q. Role of Shigella infection in endometriosis: a novel hypothesis. Med Hypotheses. 2008;70(2):239–43.
Article
CAS
PubMed
Google Scholar
Winship A, Van Sinderen M, Heffernan-Marks A, Dimitriadis E. Chondroitin sulfate proteoglycan protein is stimulated by interleukin 11 and promotes endometrial epithelial cancer cell proliferation and migration. Int J Oncol. 2017;50(3):798–804.
Article
CAS
PubMed
Google Scholar
Wang P, Wu S, Zeng X, Zhang Y, Zhou Y, Su L, et al. BCAT1 promotes proliferation of endometrial cancer cells through reprogrammed BCAA metabolism. Int J Clin Exp Pathol. 2018;11(12):5536–+.
Hosono S, Matsuo K, Ito H, Oze I, Hirose K, Watanabe M, et al. Polymorphisms in base excision repair genes are associated with endometrial cancer risk among postmenopausal Japanese women. Int J Gynecol Cancer. 2013;23(9):1561–8.
Article
PubMed
Google Scholar
Krupa R, Sobczuk A, Poplawski T, Wozniak K, Blasiak J. DNA damage and repair in endometrial cancer in correlation with the hOGG1 and RAD51 genes polymorphism. Mol Biol Rep. 2011;38(2):1163–70.
Article
CAS
PubMed
Google Scholar
Konno Y, Dong P, Xiong Y, Suzuki F, Lu J, Cai M, et al. MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget. 2014;5(15):6049.
Article
PubMed
PubMed Central
Google Scholar
Nevadunsky NS, Van Arsdale A, Strickler HD, Moadel A, Kaur G, Frimer M, et al. Metformin use and endometrial cancer survival. Gynecol Oncol. 2014;132(1):236–40.
Article
CAS
PubMed
Google Scholar
Wong JY, Huggins GS, Debidda M, Munshi NC, De Vivo I. Dichloroacetate induces apoptosis in endometrial cancer cells. Gynecol Oncol. 2008;109(3):394–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huo X, Sun H, Liu Q, Ma X, Peng P, Yu M, et al. Clinical and expression significance of AKT1 by co-expression network analysis in endometrial cancer. Front Oncol. 2019;9:1147.
Article
PubMed
PubMed Central
Google Scholar
Filetti S, Bidart JM, Arturi F, Caillou B, Russo D, Schlumberger M, et al. Sodium/iodide symporter: a key transport system in thyroid cancer cell metabolism. Eur J Endocrinol. 1999;141(5):443–57.
Article
CAS
PubMed
Google Scholar
Feng X, Li T, Liu Z, Shi Y, Peng Y. HOXC10 up-regulation contributes to human thyroid cancer and indicates poor survival outcome. Mol BioSyst. 2015;11(11):2946–54.
Article
CAS
PubMed
Google Scholar
Han CG, Huang Y, Qin L. Long non-coding RNA ZFAS1 as a novel potential biomarker for predicting the prognosis of thyroid cancer. Med Sci Monit Int Med J Exp Clin Res. 2019;25:2984.
CAS
Google Scholar
Xu Y, Chen J, Yang Z, Xu L. Identification of RNA expression profiles in thyroid cancer to construct a competing endogenous RNA (ceRNA) network of mRNAs, long noncoding RNAs (lncRNAs), and microRNAs (miRNAs). Med Sci Monit Int Med J Exp Clin Res. 2019;25:1140.
CAS
Google Scholar
Bonora E, Porcelli AM, Gasparre G, Biondi A, Ghelli A, Carelli V, et al. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res. 2006;66(12):6087–96.
Article
CAS
PubMed
Google Scholar
Jeong S, Kim IK, Kim H, Choi MJ, Lee J, Jo YS. Liver X receptor \(\beta \) related to tumor progression and ribosome gene expression in papillary thyroid cancer. Endocrinol Metabol. 2020;35(3):656.
Article
CAS
Google Scholar
Zhao G, Kang J, Xu G, Wei J, Wang X, Jing X, et al. Tunicamycin promotes metastasis through upregulating endoplasmic reticulum stress induced GRP78 expression in thyroid carcinoma. Cell Biosci. 2020;10(1):1–10.
Article
CAS
Google Scholar
Alsina J, Alsina R, Gulec S. A concise atlas of thyroid cancer next-generation sequencing panel ThyroSeq v.2. Mol Imaging Radionuclide Therapy. 2017;26(Suppl 1):102–117.
Theret L, Jeanne A, Langlois B, Hachet C, David M, Khrestchatisky M, et al. Identification of LRP-1 as an endocytosis and recycling receptor for \(\beta \)1-integrin in thyroid cancer cells. Oncotarget. 2017;8(45):78614.
Article
PubMed
PubMed Central
Google Scholar
Liu H, Deng H, Zhao Y, Li C, Liang Y. LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin Cancer Res. 2018;37(1):1–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Owens LV, Xu L, Dent GA, Yang X, Sturge GC, Craven RJ, et al. Focal adhesion kinase as a marker of invasive potential in differentiated human thyroid cancer. Ann Surg Oncol. 1996;3(1):100–5.
Article
CAS
PubMed
Google Scholar
Eissing L, Scherer T, Todter K, Knippschild U, Greve JW, Buurman WA, et al. De novo lipogenesis in human fat and liver is linked to ChREBP- Band metabolic health. Nat Commun. 2013;4:1528 EP. https://doi.org/10.1038/ncomms2537.
Hughes R, Magee E, Bingham S, et al. Protein degradation in the large intestine: relevance to colorectal cancer. Curr Issues Intestinal Microbiol. 2000;1(2):51–8.
CAS
Google Scholar
Jaén RI, Prieto P, Casado M, Martín-Sanz P, Boscá L. Post-translational modifications of prostaglandin-endoperoxide synthase 2 in colorectal cancer: an update. World J Gastroenterol. 2018;24(48):5454–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tomonaga T, Matsushita K, Yamaguchi S, Oh-Ishi M, Kodera Y, Maeda T, et al. Identification of altered protein expression and post-translational modifications in primary colorectal cancer by using agarose two-dimensional gel electrophoresis. Clin Cancer Res. 2004;10(6):2007–14.
Article
CAS
PubMed
Google Scholar
Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005;6(5):322–7.
Article
CAS
PubMed
Google Scholar
Park J, Cartwright CA. Src activity increases and Yes activity decreases during mitosis of human colon carcinoma cells. Mol Cell Biol. 1995;15(5):2374–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simão ÉM, Sinigaglia M, Bugs CA, Castro MAA, Librelotto GR, Alves R, et al. Induced genome maintenance pathways in pre-cancer tissues describe an anti-cancer barrier in tumor development. Mol BioSyst. 2012;8(11):3003–9.
Article
PubMed
CAS
Google Scholar
Reilly NM, Novara L, Di Nicolantonio F, Bardelli A. Exploiting DNA repair defects in colorectal cancer. Mol Oncol. 2019. https://doi.org/10.1002/1878-0261.12467.
Article
PubMed
PubMed Central
Google Scholar
Fung KY, Brierley GV, Henderson S, Hoffmann P, McColl SR, Lockett T, et al. Butyrate-induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress response. J Proteome Res. 2011;10(4):1860–9.
Article
CAS
PubMed
Google Scholar
Markman JL, Shiao SL. Impact of the immune system and immunotherapy in colorectal cancer. J Gastrointest Oncol. 2015;6(2):208.
PubMed
PubMed Central
Google Scholar
Agarwal A, Das K, Lerner N, Sathe S, Cicek M, Casey G, et al. The AKT/I \(\kappa \) B kinase pathway promotes angiogenic/metastatic gene expression in colorectal cancer by activating nuclear factor-\(\kappa \) B and \(\beta \)-catenin. Oncogene. 2005;24(6):1021–31.
Article
CAS
PubMed
Google Scholar
Wang CJ, Frånbergh-Karlson H, Wang DW, Arbman G, Zhang H, Sun XF. Clinicopathological significance of BTF3 expression in colorectal cancer. Tumor Biol. 2013;34(4):2141–6.
Article
CAS
Google Scholar
Saleh M, Trinchieri G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol. 2011;11(1):9–20.
Article
CAS
PubMed
Google Scholar
Mehlen P, Llambi F. Role of netrin-1 and netrin-1 dependence receptors in colorectal cancers. Br J Cancer. 2005;93(1):1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10(7):687–92.
Article
CAS
PubMed
Google Scholar
Mäkinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334(6053):252–5.
Article
PubMed
CAS
Google Scholar
Takai N, Miyazaki T, Fujisawa K, Nasu K, Miyakawa I. Expression of receptor tyrosine kinase EphB4 and its ligand ephrin-B2 is associated with malignant potential in endometrial cancer. Oncol Rep. 2001;8(3):567–73.
CAS
PubMed
Google Scholar
Yu T, Li J, Yan M, Liu L, Lin H, Zhao F, et al. MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4, PIK3R3, mTOR, S6K2 signaling pathway. Oncogene 2014;34:413 EP. https://doi.org/10.1038/onc.2013.574.
Chang JL, Tsao YP, Liu DW, Han CP, Lee WH, Chen SL. The expression of type I growth factor receptors in the squamous neoplastic changes of uterine cervix. Gynecologic Oncol. 1999;73(1):62–71.
Article
CAS
Google Scholar
The activation of an extracellular signal-regulated kinase by oestradiol interferes with the effects of trastuzumab on HER2 signalling in endometrial adenocarcinoma cell lines. Eur J Cancer. 2003;39(9):1302–1309.
Porter AP, Papaioannou A, Malliri A. Deregulation of Rho GTPases in cancer. Small GTPases. 2016;7(3):123–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7(5):1016–36.
CAS
PubMed
PubMed Central
Google Scholar
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Role of the nervous system in cancer metastasis. J Exp Clin Cancer Res. 2018;37(1):5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vanderstraeten A, Tuyaerts S, Amant F. The immune system in the normal endometrium and implications for endometrial cancer development. J Reprod Immunol. 2015;109:7–16.
Article
CAS
PubMed
Google Scholar
Nucera C, Lawler J, Hodin R, Parangi S. The BRAFV600E mutation: what is it really orchestrating in thyroid cancer? Oncotarget. 2010;1(8):751–6.
Article
PubMed
PubMed Central
Google Scholar
Zhong WB, Liang Y, Wang CY, Chang TC, Lee W. Lovastatin suppresses invasiveness of anaplastic thyroid cancer cells by inhibiting Rho geranylgeranylation and RhoA/ROCK signaling. Endocr Relat Cancer. 2005;12(3):615–29.
Article
CAS
PubMed
Google Scholar
Jung EJ, Moon HG, Park ST, Cho BI, Lee SM, Jeong CY, et al. Decreased annexin A3 expression correlates with tumor progression in papillary thyroid cancer. PROTEOMICS-Clin Appl. 2010;4(5):528–37.
Article
CAS
PubMed
Google Scholar
Ząbczyńska M, Kozłowska K, Pocheć E. Glycosylation in the thyroid gland: vital aspects of glycoprotein function in thyrocyte physiology and thyroid disorders. Int J Mol Sci. 2018;19(9):2792.
Article
PubMed Central
CAS
Google Scholar
Liang Y, Zhang C, Ma MH, Dai DQ. Identification and prediction of novel non-coding and coding RNA-associated competing endogenous RNA networks in colorectal cancer. World J Gastroenterol. 2018;24(46):5259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao ZW, Fan XX, Yang LL, Song JJ, Fang SJ, Tu JF, et al. The identification of a common different gene expression signature in patients with colorectal cancer. Math Biosci Eng. 2019;16(4):2942–58.
Article
PubMed
Google Scholar
Guo JL, Tang T, Li JH, Yang YH, Zhang L, Quan Y. LncRNA HEIH enhances paclitaxel-tolerance of endometrial cancer cells via activation of MAPK signaling pathway. Pathol Oncol Res. 2020;26(3):1757–66.
Article
PubMed
Google Scholar
Shen J, Chen L, Cheng J, Jin X, Mu Y, Li Q, et al. Circular RNA sequencing reveals the molecular mechanism of the effects of acupuncture and moxibustion on endometrial receptivity in patients undergoing infertility treatment. Mol Med Rep. 2019;20(2):1959–65.
CAS
PubMed
Google Scholar
Ding YG, Ren YL, Xu YS, Wei CS, Zhang YB, Zhang SK, et al. Identification of key candidate genes and pathways in anaplastic thyroid cancer by bioinformatics analysis. Am J Otolaryngol. 2020;41(3):102434.
Article
CAS
PubMed
Google Scholar
Thakur S, Daley B, Gaskins K, Vasko VV, Boufraqech M, Patel D, et al. Metformin targets mitochondrial glycerophosphate dehydrogenase to control rate of oxidative phosphorylation and growth of thyroid cancer in vitro and in vivo. Clin Cancer Res. 2018;24(16):4030–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumari S, Adewale R, Klubo-Gwiezdzinska J. The molecular landscape of Hürthle cell thyroid cancer is associated with altered mitochondrial function-a comprehensive review. Cells. 2020;9(7):1570.
Article
PubMed Central
Google Scholar
Yang Q, Wang S, Dai E, Zhou S, Liu D, Liu H, et al. Pathway enrichment analysis approach based on topological structure and updated annotation of pathway. Briefings Bioinform. 2019;20(1):168–77.
Article
CAS
Google Scholar
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168(4):657–69.
Article
CAS
PubMed
Google Scholar
La Vecchia S, Sebastián C. Metabolic pathways regulating colorectal cancer initiation and progression. Semin Cell Dev Biolo. 2020;98:63–70. SI: Cancer Cells and Therapeutic Targets.
Byrne FL, Poon IKH, Modesitt SC, Tomsig JL, Chow JDY, Healy ME, et al. Metabolic vulnerabilities in endometrial cancer. Cancer Res. 2014;74(20):5832–45.
Article
CAS
PubMed
Google Scholar
Coelho RG, Fortunato RS, Carvalho DP. Metabolic reprogramming in thyroid carcinoma. Front Oncol. 2018;8:82.
Article
PubMed
PubMed Central
Google Scholar
Sweatt AJ, Wood M, Suryawan A, Wallin R, Willingham MC, Hutson SM. Branched-chain amino acid catabolism: unique segregation of pathway enzymes in organ systems and peripheral nerves. Am J Physiol Endocrinol Metabol. 2004;286(1):E64–76. https://doi.org/10.1152/ajpendo.00276.2003.
Article
CAS
Google Scholar
Lauss M, Kriegner A, Vierlinger K, Noehammer C. Characterization of the drugged human genome. Pharmacogenomics. 2007;8(8):1063–73. https://doi.org/10.2217/14622416.8.8.1063.
Article
CAS
PubMed
Google Scholar
Fu T, Song W, Ren J, Wang C, Ge Y. Analysis of circular RNA-related competing endogenous RNA identifies the immune-related risk signature for colorectal cancer. Front Genet. 2020;11:505.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu BX, Huang GJ, Cheng HB. Comprehensive analysis of core genes and potential mechanisms in rectal cancer. J Comput Biol. 2019;26(11):1262–77. https://doi.org/10.1089/cmb.2019.0073.
Article
CAS
PubMed
Google Scholar